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Growing rapidly .... And vulnerable to climate change
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Figure 2. Maps of federal lands and
American Indian reservations (a), the
percent of cropland irrigated (b), and the
percent change in population from 2000
to 2008 (c). Data from the National Atlas
and the U.S. Census Bureau.
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Climate

Change Indicators
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Global Energy Balance (W/m?)
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Westerlies
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Monthly NCEP/DOE Reanalysis 2
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The Southern Hemisphere annular mode
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Winter Storm Track Changes
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Planting Zone Shifts Already Observed

1990 Map 2012 Map

Re-colored version ofthe 2012 USDA Plant Hardiness Zone Map
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Changes in western U.S. snowmelt runoff timing, 1948-2002.
Source: Stewart et al. (2005).
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Annual Surface Soil Moisture Trends
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Figure 3.2. Changes in annual surface soil moisture per year over the period 1988 to 2010
based on multisatellite datasets. Surface soil moisture exhibits wetting trends in the Northeast,

Florida, upper Midwest, and Northwest, and drying trends almost everywhere else. (Images

prov1ded by W. DOI‘IgO) ' From the “National Climate Assessment: Climate Change
Impacts in the United States” Russell — May 14, 2014



Trends in Flood Magnitude
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Figure 3.5. Trend magnitude (triangle size) and direction (green = increasing trend, brown = decreasing trend) of
annual flood magnitude from the 1920s through 2008. Flooding in local areas can be affected by multiple factors,
including land-use change, dams, and diversions of water for use. Most significant are increasing trends for floods in
Midwest and Northeast, and a decreasing trend in the Southwest. (Figure source: Peterson et al. 2013).
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Atmospheric Models
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Computer code that solves differential equations of air motion and
thermodynamics to obtain time and space dependent values for
temperature, wind speed, moisture and pressure in the
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Cloud Responses to Warming
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Figure 7.11: Robust cloud responses to greenhouse warming (those simulated by most models and possessing some
kind of mndependent support or understanding). The tropopause and melting level are shown by the thick solid and thin
grey dashed lines, respectively. Changes anticipated 1n a warmer climate are shown by arrows. with red colour
indicating those making a robust positive feedback contribution and grey indicating those where the feedback
contribution 1s small and/or highly uncertain. No robust mechanisms contribute negative feedback. Changes include
nising high cloud tops and melting level. and increased polar cloud cover and/or optical thickness (high confidence);
broadening of the Hadley Cell and/or poleward migration of storm tracks. and narrowing of ramnfall zones such as the
ITCZ (medium confidence): and reduced low-cloud amount and/or optical thickness (low confidence). Confidence
assessments are based on degree of GCM consensus, strength of independent lines of evidence from observations or
process models, and degree of basic understanding.
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Human Eftects on Monsoons

(a) present

(b) future
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the climate warms, increasing water vapour transport from the ocean into land increases because warmer air contains
more water vapour. This also increases the potential for heavy rainfalls. Warming-related changes in large-scale
circulation influence the strength and extent of the overall monsoon circulation. Land use change and atmospheric
aerosol loading can also affect the amount of solar radiation that 1s absorbed in the atmosphere and land, potentially
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a)  Wettest consecutive five days (RX5day)
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Projected Temperature Increases
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Figure 20.1. Maps show projected changes in average, as compared to 1971-1999. Top row shows projections assuming
heat-trapping gas emissions continue to rise (A2). Bottom row shows projections assuming substantial reductions in
emissions (B1). (Figure source: adapted from Kunkel et al. 2013).
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Projected Snow Water Equivalent
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Figure 20.2. Snow water equivalent (SWE) refers to the amount of water held in a volume of snow, which depends on the
density of the snow and other factors. Figure shows projected snow water equivalent for the Southwest, as a percentage of
1971-2000, assuming continued increases in global emissions (A2 scenario). The size of bars 1s in proportion to the amount
of snow each state contributes to the regional total; thus, the bars for Arizona are much smaller than those for Colorado,
which contributes the most to region-wide snowpack. Declines in peak SWE are strongly correlated with early timing of
runoff’ and decreases in total runoff. For watersheds that depend on snowpack to provide the majority of the annual runoff;
such as in the Sierra Nevada and in the Upper Colorado and Upper Rio Grande River Basins, lower SWE generally
translates to reduced reservoir water storage. (Data from Scripps Institution of Oceanography).
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From the “National Climate Assessment: Climate Change Impacts in the United States



A2 2041-2070

Projected Changes in Snow,
Runoff, and Soil Moisture

Figure 3.1. These projections, assuming
continued increases in heat-trapping gas
emissions (A2 scenario; Ch. 2: Our Changing

Climate), illustrate: a) major losses in the water

content of the snowpack that fills western rivers
(snow water equivalent, or SWE); b) significant
reductions in runoff in California, Arizona,

and the central Rocky Mountains; and c)
reductions in soil moisture across the

Southwest. The changes shown are for mid-
century (2041-2070) as percentage changes
from 1971- 2000 conditions (Figure source:
Cayan et al. 2013).

From the “National Climate Assessment: Climate Change
Percent Change Impacts in the United States” Russell = May 14, 2014



Streamflow Projections for River Basins in the Western U.S.
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Figure 3.4. Annual and seasonal streamflow projections based on the B1 (with substantial emissions reductions), A1B
(with gradual reductions from current emission trends beginning around mid-century), and A2 (with continuation of
current rising emissions trends) CMIP3 scenarios for eight river basins in the western United States. The panels show
percentage changes in average runoff, with projected increases above the zero line and decreases below. Projections are
for annual, cool, and warm seasons, for three future decades (2020s, 2050s, and 2070s) relative to the 1990s.
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Projected Changes in Water Withdrawals

(a) Without Climate Change (b) With Climate Change
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Figure 3.11. The effects of climate change, primarily associated with increasing temperatures and potential
evapotranspiration, are projected to significantly increase water demand across most of the United States. Maps show
percent change from 2005 to 2060 in projected demand for water assuming (a) change in population and socioeconomic
conditions based on the underlying A1B emissions scenario, but with no change in climate, and (b) combined changes in
population, socioeconomic conditions, and climate according to the A1B emissions scenario (gradual reductions from
current emission trends beginning around mid-century). (Figure source: Brown et al. 2013).
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Where 15 global warming going?
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1.

What 1s the role of the Southern Ocean 1n the

olobal climate system?

It may account for up to half of the annual oceanic uptake
of anthropogenic carbon dioxide from the atmosphere (cf.,

Gruber et al., 2009)

Vertical exchange 1n the Southern Ocean 1s responsible for
supplying nutrients that fertilize three-quarters of the

biological production 1n the global ocean north of 30°S
(Sarmiento et al., 2004)

It may account for up to 70 £ 30% of the excess heat that
1s transferred from the atmosphere into the ocean each year

(see analysis of IPCC AR4 models)

Southern Ocean winds and buoyancy fluxes are the
principal source of energy for driving the large scale deep
meridional overturning circulation throughout the ocean

(e.g., Togegweiler and Samuels, 1998; Marshall and Speer,
2012)



The Southern Ocean and the deep ocean are warming
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Anthropogenic CO; Column Inventory (mol m-2)

Column inventory of anthropogenic CO, in the oceans (after Sabine et al. 2002).
High inventories are associated with deep water formation in the North Atlantic
and intermediate and mode water formation between 30°S and 50°S

(Feely and Sabine, http://www.pmel.noaa.gov/co2/PressConference.html) e i o
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The Antarctic Circumpolar Current System
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Simulations of the winds are getting better and are likely to continue
their poleward shift over the near future.
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Figure 9.19: Zonal-mean zonal wind stress over the oceans in (a)
CMIP5 models and (b) multi-model mean comparison with CMIP3.

Annual mean zonal wind change at 850 hPa (RCP4.5: 2016-2035)
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Figure 11.15: CMIP)5 projected changes [m/s] in zonal (west-to-east)
wind at 850hPa for 2016—2035 relative to 1986—-2005 under RCP4.5.

“The average 2016—2035 SH extra-tropical
storm tracks and zonal winds are lkely to
shift poleward relative to 1986—2005.”
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Simulated Sea Surface Height (cm) Annual mean, 2001-2005
Observed

This 1s a different subset of CMIP5 models
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Drake Passage "Iransport: T oy
. Values are net transport
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SOSE (2008) GFDL-ESM2M BCC-CSM?2 CSIRO-MK3.6
148.1 Sv 133.7 Sv 156.6 Sv 108.2 Sv

TN WY
| T

GFDIL-CM2.5  CanESM? HadGEM92-ES ~ MRI
114.9 Sv 154.6 Sv 179.1 Sv 115.5 Sv

Frontal structure is not captured by lower resolution models Russell =May 14, 2014



Ocean Heat Content “Error” (Modern)
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Rate of Uptake of Heat by the Ocean (Future-Modern)
(W/m?, over the next century [2081-2100 minus 1986-2005])
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Rate of Uptake of Heat by the Lower Ocean (below 2000m)
(W/m?, over the next century [2081-2100 minus 1986-2005])
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Colum Inventory DIC Ditterence

(mol/m?; Difference From GLODAP)

%00

~s00

- 1000

-2000

—4000

—-6000

~B000

«10000

0

-800

=-1000

—2000

—4000

—-E000

-8000

00

=00

-1000

-2000

—4000

—-6000

00

-S00

=-1000

-2000

—4000

—-6000

~B000

a
Annual mean (2001-2005)

Some of the column
inventory difference may
reflect differences in the
model bathymetry from
observed
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Surface Water pH Difference Annual mean (2001-2005)
(From GLODAP/WOA2001)
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calculated from the
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World Ocean Atlas
(2001) Temperature
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formulas from Dickson

(2007)
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Resolution
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(~1 km)
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ABOUT WCRP CMIP3 PROJECTS . SOFTWARE PUBLICATIONS

Program for Climate Model
Diagnosis and Intercomparison
-

11:18:15 - 9/20/2012

Printer Friendly Version

* Welcome to PCMDI!

b About PCMDI

b CMIP3 PCMDI was established in 1989 at the Lawrence Livermore National Laboratory (LLNL), located in the San Francisco Bay area, in California.
Our staff includes research scientists, computer scientists, and diverse support personnel. We are primarily funded by the Reglonal and Global

> CMIPS Climate Modeling (RGCM) Program and the Atmospheric System Research (ASR) Program of the Climate and Environmental Sciences
Division of the U.S. Department of Energy's Office of Science, Biological and Environmental Research (BER) program.

> Other CMIPs
The PCMDI mission is to develop improved methods and tools for the diagnesis and intercomparison of general circulation models (GCMs) that

b CAPT simulate the giobal climate. The need for innovative analysis of GCM climate simulations is apparent, as increasingly more complex models are
developed, while the disagreements among these simuiations and relative to climate observations remain significant and poorly understood. The

b Software nature and causes of these disagreements must be accounted for in a systematic fashion in order to confidently use GCMs for simulation of
putative global climate change.

% Sukucations PCMDI's mission demands that we work on both scientific projects and infrastructural tasks. Our current scientific projects focus on supporting
model intercomparison, on developing a model parameterization testbed, and on devising robust statistical methods for climate-change

b Calendar detection/attribution. Examples of ongoing infrastructural tasks include the development of software for data management, visualization, and

computation ; the assembly/organization of observational data sets for model validation; and the consistent documentation of climate model
features. Detalils of all this work are described in numerous publications, as well as on this website.

b Site Map

We now also are applying our collective expertise to support modeling studies initiated by the World Climate Research Programme (WCRP).
Notably, we are currently providing leadership in managing the Coupled Model Intercomparison Project, Phase 5 (CMIP5). Among PCMDI's role in
CMIPS is responsibility for leading the Earth System Grid Federation (ESGF) which stores and distributes terrascale data sets from multiple
coupled ocean-atmosphere global climate model simulations. Extensive analysis of these simulations by members of the international climate
community will provide an important scientific basis for the IPCC's Fifth Assessment Report on Climate Change, which is scheduled for
publication in 2013.

http://www-pcmdi.linl.gov/
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Home » UA Research Data Center

UA Research Data Center

Overview

The new University of Arizona Research Data Center (RDC) is a state-of-the-art computer storage hub that
triples the university's previous capacity to host centralized large computer clusters. Scientific research,
particularly the kind done at the university, relies upon HPC/HTC capacity to hold and analyze the
multitude of data collected during research. These services are open to any faculty, researcher or student
who has a use for HPC/HTC systems.

Computer System Types

1. Shared Memory - High Performance Computing (HPC) systems enable users to run a single instance of
parallel software over many processors.

2. Distributed Memory - Distributed memory refers to multiple-processor computer systems in which
each processor has access to its own dedicated memory.

3. High Throughput - HighThroughput Computing (HTC) serial systems are more suited to running
multiple independent instances of software on multiple processors at the same time.

UA Research Data Center Information/Specifications

Russell — May 14, 2014



So ..... Climate Change Info for your House?
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The 1st Address-Based Climate Reporting Service

Is your Property at Risk?

We report GLOBAL WARMING and other ENVIRONMENTAL RISK INFORMATION mapped to any address!
Get a report in seconds - including top Scientist commentary.

Street Addh City: State: Zipe Go:
| | | Choose One = | GET A REPORT
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Our Mission

Address-based climate reporting that allows homebuyers and peoparty owners o assess how climate change and other
environmental risks could impact a property, Now individuals can have the same king of information the insurance companies
have to review their risk.

We're not there yet
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.. but we're working on it.
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