DRAFT TECHNICAL SUPPORT DOCUMENT (TSD)

February 2018

I. General Comments:

A. Company Information

1. Tucson Electric Power (TEP) – Irvington Generating Station

2. Source Address: 3950 East Irvington Road, Tucson, AZ 85714.
 Mailing Address: 88 East Broadway Blvd, Mail Stop HQW705, Tucson Arizona or
 P.O. Box 711, Mail Stop HQW705, Tucson, AZ 85702.

B. Background

PDEQ received an application for a Prevention of Significant Deterioration (PSD) Authorization and Significant Revision to the Class I air quality permit (#1052) for the TEP – Irvington Generating Station (TEP-IGS) also known as the “H. Wilson Sundt Generating Station” on August 3, 2017 (revised December 2017). This TSD has been updated for this modification (See Appendix A for Previous TSD documents).

TEP’s objective for the proposed facility modification is to support a more responsive and sustainable resource portfolio for power production. TEP is expanding solar and wind resources with the goal of supplying at least 30 percent of retail energy load from renewable resources by 2030. Operational challenges associated with renewable resources require TEP to develop systems to manage the intermittency and variability of energy generated by renewable resources. TEP reports recent completion of three energy storage projects designed to partially overcome these operational challenges by providing grid balancing resources. To accomplish this in part, TEP is proposing to install up to ten natural-gas fired reciprocating internal combustion engines (RICE). The proposed RICE units will provide capacity and will mitigate power fluctuations.

The fundamental business purpose of the proposed project is to modernize and expand the IGS to allow TEP to provide reliable, efficient, grid-balancing resources which can ramp up quickly and provide 100% of the effective load carrying capacity (ELCC) during peak periods of any length. The selection of RICE units to meet this business purpose is discussed in detail in TEP’s 2017 Integrated Resource Plan (IRP). In summary, TEP selected RICE units because they provide flexible, fast-responding power and assist in mitigating power fluctuations associated with renewable resources.¹

TEP identified RICE units as the best option to expand generation and integrate renewable resources.² Because renewable resources produce power intermittently and TEP requires back up generation capability with fast start times (capable of being on-line at full load within 5 minutes); operation across a range of loads; and fast ramping (capable of ramping from 30% to 100% load in 40 seconds). According to TEP’s 2017 IRP, a Flexible Generation Technology Assessment was conducted which found that the RICE technology is the preferred technology to provide capacity and assist in mitigating renewable energy fluctuations.

² The “2017 Flexible Generation Technology Assessment” prepared for TEP (March 2017), included a review of various technologies including simple cycle gas turbines, reciprocating engines, combined cycle gas turbines, solar photovoltaic, wind generation and batter storage technologies. According to TEP’s 2017 IRP, RICE units were selected because of their fast response, flexibility, and efficiency.
intermittency and variability.3 A September 2013 report by the National Renewable Energy Laboratory (NREL), noted that challenges associated with renewable energy (i.e., solar and wind power) integration include uncertainty and variability in power supply as well as difficulty balancing electric grid loads. The presence of wind and solar power sources on electric grids can cause coal or natural gas fired plants to cycle on and off more frequently to accommodate fluctuations in renewable energy power generation. Cycling on and off increases wear on the coal and natural gas fired units and decreases energy efficiency. These challenges can be overcome using a number of integration techniques, including advanced forecasting, energy storage, demand response, and flexible power generation sources such as natural gas combustion turbines and RICE units.4

For the reasons described above, TEP has not proposed to install energy storage or other power production technologies such as combustion turbines at IGS. Implementation of either of these options would fundamentally redefine the project. Section 2.1 of TEP’s “Application for a Prevention of Significant Deterioration (PSD) Authorization and Significant Revision to Class 1 Air Quality Permit for Irvington Generating Station provides additional details regarding the proposed project.

History

TEP-IGS is an electric utility power generating station that generates electricity by fossil fuel combustion (natural gas, liquid fuel) and landfill gas combustion. The original construction of TEP-IGS did not provide any capacity to fire coal as an alternate fuel and was regulated by the Pima County Health Services Department. In 1980 the Department of Energy (DOE) promulgated regulations that required certain large power plants to convert their operations to have the additional capacity to fire coal. Since Arizona Revised Statutes (ARS) provide that the State has original jurisdiction for coal fired electrical generating stations, the Arizona Department of Environmental Quality (ADEQ) assumed oversight from Pima County and implemented the permitting and air quality regulation of TEP-IGS. TEP applied for and received an installation permit for the coal conversion project (See Appendix B for the Arizona Department of Health Services Installation Permit (# 1156)).

Although the initial plan was to convert each electric utility steam generating unit (EUSGU or EGU) at the station, only Unit I4 was converted. Since the change was mandated by a government order, New Source Review (NSR) requirements were not applicable [Ref. definition for “major modification” in Pima County Code (PCC) and Arizona Administrative Code (AAC) – c.ii]. The NSPS definition for “modification” also exempts mandatory coal conversion projects [Ref. 40 CFR 60.145(e)(4) and CAA Sec 111(a)(8)]. For this reason, 40 CFR Part 60, Subpart D requirements did not apply to Unit I4 or the coal preparation plant.

In the late 1990’s TEP requested that jurisdiction over TEP-IGS be returned to the Pima County Department of Environmental Quality (PDEQ); the transfer was completed shortly after the Arizona Department of Environmental Quality (ADEQ) issued a 5-year Class I permit to TEP IGS (issue date July 26, 1999). PDEQ’s authority to have jurisdiction over the generating station and any standards adopted by ADEQ affecting coal fired EUSGUs is through a delegation agreement signed between PDEQ and ADEQ.

PDEQ issued the most recent version of the permit on January 6, 2017.

4 Integrating Variable Renewable Energy: Challenges and Solutions, National Renewable Energy Laboratory, NREL/TP-6A20-60451, September, 2013 (Available at: https://www.nrel.gov/docs/fy13osti/60451.pdf).
Changes Since Issuance of Previous Permit

The previous permit was issued on January 6, 2017. This significant revision to the Class I, Title V air quality permit is an authorization to construct a major modification. This modification allows the installation of up to ten (10) RICE and the associated ancillary equipment. The ancillary equipment includes natural gas piping and electrical circuit breakers.

C. Attainment Classification

TEP-IGS is located in a region that is designated as attainment for all criteria pollutants.

II. Source Description

A. Process Description

TEP-IGS currently generates electricity using two fossil fuel fired processes: (1) Steam Turbine Cycle and (2) Combustion Turbine Cycle. This PSD modification approves the construction and operation of a third fossil fuel fired process: RICE. The proposed RICE are 18-cylinder, four-stroke, lean-burn natural gas fired spark-ignited RICE; each with an air-cooled generator to produce electricity. In addition, there are several support facilities, some of which contain applicable requirements that are addressed by the permit.

1. Steam Turbine Cycle

There are three distinct units in this process: (1) Boiler; (2) Turbine; and (3) Generator.

 a. Boiler

 Water is converted to steam via combustion of fuel and heat transfer. Steam is routed to turbines while the exhaust gasses and pollutants produced during combustion are released to the ambient atmosphere after passing though air pollution controls (if required). The concentrations of pollutants released into the atmosphere depend on the fuel fired. Typical pollutants are Particulate Matter (PM), Sulfur Dioxides (SO$_2$), Nitrogen Oxides (NO$_x$), Carbon Monoxide (CO), and Volatile Organic Compounds (VOC). Specific pollutant emission rates are provided in Section IV of this document.

 b. Turbine

 Steam exiting the boilers enters a turbine unit. The high-pressure steam passes through rotating blades which cause the turbine shaft to rotate converting the thermal energy of the steam into mechanical energy. After passing through the turbine, the steam is sent through a condenser and is recirculated to the boiler. The only process material used by the turbine unit is steam; thus there are no emissions.

 c. Generator

 The turbine drives the generator which, in turn, produces electrical energy. There are no process materials and no emissions from these units.

2. Combustion Turbine Cycle

There are two distinct units in this process: (1) Combustion Turbine; and (2) Generator
a. Combustion Turbine,

Fuel and air are mixed and injected into a combustion chamber where they are ignited. The hot combustion gases pass over the turbine blades. The resulting movement of the blades causes the shaft to rotate. Exhaust gasses and pollutants produced during combustion are released to the ambient atmosphere after passing through air pollution controls (if required). Emissions resulting from combustion typically include PM, SO₂, NOₓ, CO and VOC. Representative emission rates are provided in Section IV of this document.

b. Generator.

The turbine drives the generator which, in turn, produces electrical energy. There are no process materials and no emissions from these units.

3. RICE

a. Engine.

Combustion engines used for electric power generation are internal combustion engines in which an air-fuel mixture is compressed by a piston and ignited within a cylinder. The expansion of hot gases pushes a piston within a cylinder, which converts the linear movement of the piston into the rotating movement of a crankshaft to generate power. Each movement of the piston within a cylinder is called a stroke. For electric power generation, four-stroke engines are predominately used. A four-stroke engine completes an induction stroke, a compression stroke, a power stroke, and an exhaust stroke, with two revolutions of the crankshaft, in each repetition of the cycle. RICE are described by the number of strokes to complete one power cycle and the type of combustion: spark-ignited (“SI”), as in a typical gasoline-powered vehicle, or compression-ignited (“CI”), also known as diesel engines. SI RICE are further characterized by whether the engine is operated fuel-lean (i.e., with an air-to-fuel ratio significantly greater than the stoichiometric ratio required for complete combustion) or fuel-rich (i.e., with an air-to-fuel ratio equal to or slightly greater than the stoichiometric ratio).

b. Generator.

The engine drives the generator which, in turn, produces electrical energy. There are no process materials and no emissions from these units.

4. Support Facilities

Other equipment, operations and process that function as support facilities are turbine starter engines, emergency generators, and cooling towers. Pollutants include PM, SO₂, NOₓ, CO, and VOC.

Support equipment for the RICE include circuit breakers and natural gas piping. Pollutants emitted include GHG.

B. Operating Capacity and Schedule

TEP-IGS requires the flexibility to operate 24 hours a day, 365 days a year. The net capacity of each power production unit is as follows:

1. Fossil Fuel Fired Steam Generating Units:
a. UNIT I1 – 81 MW
b. UNIT I2 – 81 MW
c. UNIT I3 – 104 MW
d. UNIT I4 – 156 MW

2. Stationary Combustion Turbines:
 a. UNIT IGT1 – 24 MW
 b. UNIT IGT2 – 24.5 MW
 c. UNIT IGT3 – < 25 MW (Reserved for future installation See Alternate Operating Scenarios)

3. RICE:
 a. RICE01 – 19 MW
 b. RICE02 – 19 MW
 c. RICE03 – 19 MW
 d. RICE04 – 19 MW
 e. RICE05 – 19 MW
 f. RICE06 – 19 MW
 g. RICE07 – 19 MW
 h. RICE08 – 19 MW
 i. RICE09 – 19 MW
 j. RICE10 – 19 MW

C. Applicability Categories
The following categories are addressed by the permit:
1. Facility General Provisions
2. RICE (RICE01, RICE02, RICE03, RICE04, RICE05, RICE06, RICE07, RICE08, RICE09, and RICE10)
3. NSPS Subpart JJJJ Requirements for RICE (RICE01 through RICE10)
4. NESHAP Subpart ZZZZ Requirements for RICE (RICE01 through RICE10)
5. Electric Steam Generating Units EUG’s (Units - I1, I2 and I3)
6. Electric Steam Generating Units (I4)
7. Unit I4 – Regional Haze Implementation Plan
8. Cooling Towers (I1E, I2D, I3D, and I4E)
9. Stationary Rotating Machinery (IGT1, IGT1A, IGT2, and IGT2A)
10. Emergency Generators – Local Requirements (EGEN1 and EGEN2)
11. NESHAP Subpart ZZZZ Requirements for Emergency Generators (EGEN1, IGT1A, and IGT2A)
12. NSPS Emergency Generator Requirements (EGEN2)
13. Nonpoint Fugitive Dust Sources
14. Use of Paints
15. Abrasive Blasting

D. Air Pollution Control Equipment
Air Pollution Control Equipment is required for the following equipment and processes:
1. RICE Units RICE01 through RICE10
 Oxidation catalyst will be required to be installed and operated to control VOC and CO emissions.
 Selective catalytic reduction (SCR) is required to be installed and operated to control NOx emissions.
2. UNIT IGT3

Upon purchasing the unit, the Permittee is required to install and operate a water injection system or its equivalent to control NOX emissions.

III. Regulatory History

TEP is currently in compliance with permit and regulatory requirements.

A. Testing & Inspections

Inspections have been conducted regularly since PDEQ took over jurisdiction from ADEQ. The last completed inspection was concluded in 2014.

B. Excess Emissions

NOV PC1611-057 was issued on November 15, 2016 for alleged violations of the opacity standard for IGS U4. On November 15, 2016, a Settlement Agreement was reached and was executed on March 16, 2017 to resolve the alleged violation.

IV. Emission Estimates

The following table summarizes IGS annual potential to emit of air pollutants by each emission unit and by facility-wide total. The emission estimate is to establish “major source” status of IGS pursuant to CAA Sec 501(2). Other use with the estimate may include comparing source potential-to-emit with emissions inventory and test data, or with emission rates allowable by relevant standards. This emission estimate is not meant to establish any baseline emission levels. These emission figures are not meant to be emission limitations of any form.

The majority of IGS air emissions come from the boiler units. Although natural gas is the primary fuel consumed by the boilers, Units I1-I3 are permitted to co-fire natural gas with fuel oils and Unit I4 is permitted to co-fire natural gas with landfill gas. To accommodate the co-firing scenario, a fuel mix of 85% natural gas and 15% diesel was used in calculating emissions for Units I1-I3. Similarly, a fuel mix of 95% natural gas and 5% landfill gas was used for Unit I4.

The emissions from the new RICE units are calculated based on 8,760 hours of operation per year for each of the ten RICE. The summarized RICE potential to emit is included in Table 1 (below). Assumptions are presented in the Table 1 footnotes. The detailed RICE Project emission calculations and calculation methodology are included in Attachment A of Appendix C.

The Facility is voluntarily accepting a NOX emission cap to ensure that the RICE project net emissions increase for NOX is not significant. The permit requires the permanent shut down of either Unit I1 or Unit I2 (existing Units) within 180 days following initial startup of the first RICE and a requirement to permanently shut down both Units I1 and I2 within 180 days following initial startup of the sixth RICE. The NOX emission cap of 170.0 tpy applies to the ten RICE to be installed at the IGS.

For Title V air permitting purposes, the threshold to trigger a major source status is 100 tpy of any criteria air pollutant, 10 tpy of any single HAP, or 25 tpy of any HAPs combination. As shown in the summary table, IGS is a major Title V source for the following air pollutants: PM10, PM2.5, SO2, NOX, CO, VOC, and HAPs.
IGS Facility Wide Potential to Emit (tons/year) Summary (1)

<table>
<thead>
<tr>
<th>Source</th>
<th>Fuel (3)</th>
<th>PM-10</th>
<th>PM-2.5</th>
<th>SO2</th>
<th>NOx</th>
<th>CO</th>
<th>CO2e</th>
<th>VOC</th>
<th>Lead</th>
<th>Total HAPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boiler Unit I1(1)</td>
<td>85% Natural Gas</td>
<td>6.69</td>
<td>29.29</td>
<td>6.69</td>
<td>29.29</td>
<td>1.89</td>
<td>8.26</td>
<td>149.60</td>
<td>655.23</td>
<td>21.12</td>
</tr>
<tr>
<td></td>
<td>15% Diesel Fuel</td>
<td>3.73</td>
<td>16.35</td>
<td>3.73</td>
<td>16.35</td>
<td>144.59</td>
<td>633.31</td>
<td>27.15</td>
<td>118.93</td>
<td>5.66</td>
</tr>
<tr>
<td>Boiler Unit I2(1)</td>
<td>85% Natural Gas</td>
<td>6.61</td>
<td>28.97</td>
<td>6.61</td>
<td>28.97</td>
<td>1.86</td>
<td>8.17</td>
<td>147.92</td>
<td>647.91</td>
<td>20.88</td>
</tr>
<tr>
<td></td>
<td>15% Diesel Fuel</td>
<td>3.69</td>
<td>16.17</td>
<td>3.69</td>
<td>16.17</td>
<td>142.98</td>
<td>626.24</td>
<td>26.83</td>
<td>117.60</td>
<td>5.59</td>
</tr>
<tr>
<td>Boiler Unit I3</td>
<td>85% Natural Gas</td>
<td>6.87</td>
<td>30.10</td>
<td>6.87</td>
<td>30.10</td>
<td>1.94</td>
<td>8.49</td>
<td>153.73</td>
<td>673.34</td>
<td>21.70</td>
</tr>
<tr>
<td></td>
<td>15% Diesel Fuel</td>
<td>3.84</td>
<td>16.81</td>
<td>3.84</td>
<td>16.81</td>
<td>148.59</td>
<td>650.82</td>
<td>27.90</td>
<td>122.22</td>
<td>5.81</td>
</tr>
<tr>
<td>Boiler Unit I4</td>
<td>95% Natural Gas</td>
<td>11.64</td>
<td>50.97</td>
<td>11.64</td>
<td>50.97</td>
<td>3.28</td>
<td>14.37</td>
<td>214.36</td>
<td>938.88</td>
<td>128.01</td>
</tr>
<tr>
<td></td>
<td>5% Landfill Gas</td>
<td>0.67</td>
<td>2.94</td>
<td>0.67</td>
<td>2.94</td>
<td>1.52</td>
<td>6.65</td>
<td>2.70</td>
<td>11.83</td>
<td>0.47</td>
</tr>
<tr>
<td>Turbine IGT1</td>
<td>Natural Gas</td>
<td>3.30</td>
<td>14.44</td>
<td>3.30</td>
<td>14.44</td>
<td>1.05</td>
<td>4.60</td>
<td>159.84</td>
<td>700.10</td>
<td>40.96</td>
</tr>
<tr>
<td>Turbine IGT2</td>
<td>Natural Gas</td>
<td>3.30</td>
<td>14.44</td>
<td>3.30</td>
<td>14.44</td>
<td>1.05</td>
<td>4.60</td>
<td>159.84</td>
<td>700.10</td>
<td>40.96</td>
</tr>
<tr>
<td>Turbine IGT3</td>
<td>Natural Gas</td>
<td>3.05</td>
<td>0.33</td>
<td>3.05</td>
<td>0.33</td>
<td>0.97</td>
<td>0.11</td>
<td>148.00</td>
<td>13.92</td>
<td>37.93</td>
</tr>
<tr>
<td>RICE01</td>
<td>Natural Gas</td>
<td>3.00</td>
<td>10.9</td>
<td>3.00</td>
<td>10.9</td>
<td>0.3</td>
<td>1.4</td>
<td>59.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RICE02</td>
<td>Natural Gas</td>
<td>3.00</td>
<td>10.9</td>
<td>3.00</td>
<td>10.9</td>
<td>0.3</td>
<td>1.4</td>
<td>59.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RICE03</td>
<td>Natural Gas</td>
<td>3.00</td>
<td>10.9</td>
<td>3.00</td>
<td>10.9</td>
<td>0.3</td>
<td>1.4</td>
<td>59.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RICE04</td>
<td>Natural Gas</td>
<td>3.00</td>
<td>10.9</td>
<td>3.00</td>
<td>10.9</td>
<td>0.3</td>
<td>1.4</td>
<td>59.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RICE05</td>
<td>Natural Gas</td>
<td>3.00</td>
<td>10.9</td>
<td>3.00</td>
<td>10.9</td>
<td>0.3</td>
<td>1.4</td>
<td>59.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RICE06</td>
<td>Natural Gas</td>
<td>3.00</td>
<td>10.9</td>
<td>3.00</td>
<td>10.9</td>
<td>0.3</td>
<td>1.4</td>
<td>59.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RICE07</td>
<td>Natural Gas</td>
<td>3.00</td>
<td>10.9</td>
<td>3.00</td>
<td>10.9</td>
<td>0.3</td>
<td>1.4</td>
<td>59.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RICE08</td>
<td>Natural Gas</td>
<td>3.00</td>
<td>10.9</td>
<td>3.00</td>
<td>10.9</td>
<td>0.3</td>
<td>1.4</td>
<td>59.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RICE09</td>
<td>Natural Gas</td>
<td>3.00</td>
<td>10.9</td>
<td>3.00</td>
<td>10.9</td>
<td>0.3</td>
<td>1.4</td>
<td>59.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RICE10</td>
<td>Natural Gas</td>
<td>3.00</td>
<td>10.9</td>
<td>3.00</td>
<td>10.9</td>
<td>0.3</td>
<td>1.4</td>
<td>59.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Startor Engine IGT1A</td>
<td>Diesel</td>
<td>0.29</td>
<td>0.02</td>
<td>0.28</td>
<td>0.02</td>
<td>4.71</td>
<td>0.34</td>
<td>15.24</td>
<td>1.11</td>
<td>3.49</td>
</tr>
<tr>
<td>Startor Engine IGT2A</td>
<td>Diesel</td>
<td>0.29</td>
<td>0.02</td>
<td>0.28</td>
<td>0.02</td>
<td>4.71</td>
<td>0.34</td>
<td>15.24</td>
<td>1.11</td>
<td>3.49</td>
</tr>
<tr>
<td>Startor Engine IGT3A</td>
<td>Diesel</td>
<td>0.29</td>
<td>0.02</td>
<td>0.28</td>
<td>0.02</td>
<td>4.71</td>
<td>0.34</td>
<td>15.24</td>
<td>1.11</td>
<td>3.49</td>
</tr>
<tr>
<td>EGEN 1 (Kohler)</td>
<td>Diesel</td>
<td>0.21</td>
<td>0.05</td>
<td>0.21</td>
<td>0.05</td>
<td>0.01</td>
<td>0.00</td>
<td>4.18</td>
<td>1.05</td>
<td>5.66</td>
</tr>
<tr>
<td>EGEN 2 (Caterpillar)</td>
<td>Diesel</td>
<td>0.77</td>
<td>0.19</td>
<td>0.77</td>
<td>0.19</td>
<td>0.72</td>
<td>0.18</td>
<td>10.82</td>
<td>2.70</td>
<td>2.33</td>
</tr>
<tr>
<td>Cooling Tower 11E</td>
<td></td>
<td>8.19</td>
<td>35.86</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Fuel Oil Tanks/Paint Booths</td>
<td></td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>RICE Circuit Breakers</td>
<td></td>
<td>6.8</td>
<td>29.6</td>
<td>178.9</td>
<td>783.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **RICE Natural Gas Piping** | | 519.8 | 330.5 | 4,886.1| 1,981.0| 4,886.1| 1,541.2| 3,822,500| 344.0| 0.03 | 378.1
Table 1 Notes:

(1) Almost all PTE calculations are performed using AP-42 emission factors except where an enforceable permit limit becomes the limiting factor. In that case, the permit limit is to be used for the emission calculation. 8,760 hours per year is used in the PTE calculations for all operations except the operation of emergency generators for which 500 hours per year was used and of starter engines for which 146 hours per year was used.

(2) This summary table only presents PTE results from the operating scenario when, on an annual basis, Boilers I1-I3 burn a blend of 85% natural gas and 15% fuel oil #2, Boiler I4 burns a blend of 95% natural gas and 5% landfill gas, and all turbine units burn natural gas. Boiler Units I1-I3 are permitted to burn natural gas, fuel oil #5 through #6 or equivalent (including bio-diesel), and landfill gas. Boiler Unit I4 is permitted to burn natural gas or combination of natural gas and landfill gas. For turbine units, IGT1 and IGT2 are permitted to fire or co-fire natural gas and fuel oil #2 or equivalent including bio-diesel. Emissions for the RICE units are calculated based on 8760 hours of operation per year for each of the ten RICE. Maximum hourly emission rates for the RICE may include startup emissions and therefore the hourly emission rates are not indicative of the hourly emission rates for non-startup operation.

(3) The existing fossil fuel fired units (Unit 1 and Unit 2) will be permanently shut down within 180 days following initial startup of the first and sixth RICE.
V. Applicable Requirements

A. Standards addressed by the permit:

1. Pima County State Implementation Plan (SIP):

 - Rule 301 Planning Construction, or Operating without a Permit
 - Rule 302 Non-Compliance with Applicable Standards
 - Rule 315 Roads and Streets
 - Rule 316 Particulate Materials
 - Rule 318 Vacant Lots and Open Spaces
 - Rule 321 Standards and Applicability
 - Rule 343 Visibility Limiting Standard
 - Rule 344 Odor Limiting Standards

2. Code of Federal Regulations Title 40:

 - Part 52 Approval and Promulgation of Implementation Plans
 - Part 60 Subpart A General Provisions
 - Part 60 Subpart KKKK Standards of Performance for Stationary Combustion Turbines (IGT3)
 - Part 60 Subpart JJJJ Standards of Performance for Stationary Spark Ignition Internal Combustion Engines
 - Part 60 Subpart GG Standards of Performance for Stationary Gas Turbines (IGT3)
 - Part 60 Appendix B Performance Specifications
 - Part 63 Subpart A General Provisions
 - Part 63 Subpart ZZZZ NESHAPS for Stationary Reciprocating Internal Combustion Engines
 - Part 63 Subpart Q NESHAPS for Industrial Process Cooling Towers
 - Part 64 Compliance Assurance Monitoring
 - Part 72 Subpart A Acid Rain Program General Provisions
 - Part 75 Continuous Emission Monitoring
 - Part 75 Appendix A Specifications and Test Procedures
 - Part 75 Appendix B Quality Assurance and Quality Control
 - Part 75 Appendix D Optional SO2 Emissions Data Protocol for Gas and Oil Fired Units
 - Part 75 Appendix F Conversion Procedures
 - Part 75 Appendix G Determination of CO2 Emissions

3. Pima County Code (PCC) Title 17, Chapter 17:

 - 17.04.340 Words, phrases, and terms
 - 17.11.020 Planning, Constructing, or Operating Without a Permit
 - 17.11.090 Applicability – Classes of Permits
 - 17.11.190 Permits Containing Synthetic Emission Limitations and Standards
 - 17.11.200 Existing Source Emission Monitoring
 - 17.12.040 Permit Contents for Class I Permits
 - 17.12.050 Establishment of an Emissions Cap for Class I Permits
 - 17.12.070 Acid Rain Provisions
 - 17.16.020 Noncompliance with Applicable Standards
 - 17.16.030 Odor Limiting Standards
 - 17.16.040 Standards and Applicability (Includes NESHAP)
 - 17.16.050 Visibility Limiting Standards
 - 17.16.060 Fugitive Dust Producing Activities
 - 17.16.080 Vacant Lots and Open Spaces
 - 17.16.090 Roads and Streets
 - 17.16.100 Particulate Materials
 - 17.16.110 Storage Piles
 - 17.16.130 Applicability
17.16.160 Standards of Performance for Fossil-Fuel Fired Steam Generators and General Fuel Burning Equipment
17.16.165 Standards of Performance for Fossil-Fuel Fired Industrial and Commercial Equipment
17.16.340 Standards of Performance for Stationary Rotating Machinery
17.16.430 Standards of Performance for Unclassified Sources
17.16.490 Standards of Performance for New Stationary Sources
17.16.560 Permits for Sources Located in Nonattainment Areas
17.16.590 Permits for Sources Located in Attainment and Unclassifiable Areas
17.16.600 Air Quality Impact Analysis and Monitoring Requirements
17.16.630 Visibility Protection

4. Installation Permit #1156 – October 14, 1981 by Arizona Department of Health Services (Appendix B)

B. Standards which are not applicable:

1. PSD/NSR

 RICE01 through RICE10 have netted out of PSD (40 CFR 52.21) for NOX.

 RICE01 through RICE10 are exempt from 40 CFR Parts 74, 75, and 76.

C. Promulgated standards which will be or may be applicable not addressed by the permit:

 No promulgated standards which may be applicable have been identified that are not addressed by the permit.

D. Promulgated standards which will be or may be applicable after issuance of the permit that have been addressed by the permit:

 No promulgated standards which may be applicable after issuance have been addressed by the permit.

VI. Previous Permit Conditions

 No previous permit conditions were removed from the permit as part of this modification.

VII. Applicability Determinations

1. PSD

 This modification has triggered PSD for PM10, PM2.5, CO, and VOC for the RICE. PSD is not applicable to NOX. Because the project is a major modification for CO, VOC, PM10, PM2.5, and GHG, these five pollutants trigger a BACT determination.

 The regulated air pollutants which will be emitted by the RICE include carbon monoxide (CO), nitrogen oxides (NOX), volatile organic compounds (VOC), sulfur dioxide (SO2), particulate matter (PM), PM less than or equal to 10 micrometers (µm) in diameter (PM10), PM less than or equal to 2.5 µm in diameter (PM2.5), greenhouse gases (GHG), and hazardous air pollutants (HAPs). Emissions increases from the RICE project exceed the PSD significance level for six pollutants: NOX, VOC, CO, PM10, PM2.5, and GHG. Incorporating the emission reductions resulting from the shutdown of Units 11 and 12 (as proposed by TEP), the net emissions increase for NOX is not significant and PSD review is not required with respect to NOX. For the other five pollutants, no creditable decreases in actual emissions are being claimed, and the net emissions increases are equal to the emissions increases from the RICE project. Therefore, the project is a major modification and the project triggers a PSD air impact analysis for VOC, CO, PM10, and PM2.5. The air impact analysis is required to evaluate the project impacts with regard to the National
Ambient Air Quality Standards (NAAQS), PSD Class II increments, and PSD Class I increments at the eastern and western units of Saguaro National Park (SNP) and Galiuro Wilderness Area (GWA).

A PSD air quality dispersion modeling analysis was prepared for the three criteria pollutants that trigger PSD review (CO, PM10, PM2.5). Because the resulting NOx emissions are below the NOx significant emission rate of 40 tons per year, the NOx emissions do not trigger New Source Review under PSD regulations and air dispersion modeling was not performed NOx. The dispersion modeling analysis was performed using AERMOD and included:

- An analysis of existing background monitoring concentrations relative to the NAAQS to confirm that significant impact levels (SILs) can be used in the analysis;
- Dispersion modeling to determine whether ambient impacts caused by the Project emissions exceed the SILs;
- An assessment of the proposed Project’s impacts to soils, vegetation, and visibility;
- An assessment of regional population growth and associated emissions that may be caused by the proposed Project; and
- An assessment of the proposed Project’s potential to affect increments, visibility, or other air quality related values (AQRVs) in Class I areas.

The modeling demonstration was conducted based on a merged stack configuration. As a result, the Project is required to construct the RICE exhaust stacks in a manner consistent with the merged stack model approach. The RICE exhaust stacks must be configured into two groups of five stacks per group. Within each group of five there are two clusters, one of three stacks and one of two stacks each separated by slightly less than one diameter (outside edge to outside edge) from the other stack(s) in the cluster for a total of four clusters in two groups.

The modeling analysis demonstrates that the Project does not result in air quality impacts above the SILs for CO, PM10 and PM2.5 and does not cause or contribute to an exceedance of any NAAQS or PSD increments for these pollutants. Similarly, an analysis of Project emissions of VOC in relation to emission rates in prior modeling analyses was used to demonstrate that the Project does not result in air quality impacts above the SILs for ozone and does not cause or contribute to an exceedance of the ozone NAAQS. The detailed Air Impact Analysis documentation is included Attachment B of Appendix C.

Because the project is a major modification for CO, VOC, PM10, PM2.5, and GHG, these five pollutants require BACT emission limits. A full top-down BACT analysis was conducted to identify BACT for each pollutant. Before initiating the BACT analysis for a given emission unit and a given pollutant, the minimum acceptable level of control allowed under an applicable New Source Performance Standard (NSPS) or National Emission Standard for Hazardous Air Pollutants (NESHAP) as identified as the BACT “baseline”. Next, an evaluation was conducted using the five-step “top-down” approach recommended by the United States Environmental Protection Agency (USEPA). The five steps of a top-down BACT analysis are:

Step 1: Identify all available control technologies with practical potential for application to the emission unit and regulated pollutant under evaluation;
Step 2: Eliminate all technically infeasible control technologies;
Step 3: Rank remaining control technologies by effectiveness and tabulate a control hierarchy;
Step 4: Evaluate most effective controls and document results; and
Step 5: Select BACT, which will be the most effective practical option not rejected, based on economic, environmental, and/or energy impacts.
For existing sources that trigger PSD, 40 CFR §52.21(j)(3) states that BACT applies to each proposed emissions unit at which a net emissions increase would result from the change. The proposed project will result in a net emissions increase in PM10; PM2.5; CO; VOC; and GHG. The BACT review applies to the following proposed emission units and associated pollutants:

- **RICE units** – PM10, PM2.5, CO, VOC, GHG (carbon dioxide [CO₂], nitrous oxide [N₂O], methane [CH₄])
- **Natural gas piping** – GHG (CH₄)
- **High voltage circuit breakers** – GHG (sulfur hexafluoride [SF₆])

PM10/PM2.5 BACT for the RICE is determined to be 2.5 pounds PM10/PM2.5 per hour for non-startup operation. PM10/PM2.5 BACT for startup is: 1) minimize time spent at idle, 2) 30-minute startup duration limit, and 3) operation according to manufacturer specifications for minimizing emissions. Although 2.5 lb/hr is deemed BACT for non-startup operation, the PM10/PM2.5 emission limit in the permit (2.37 lb/hr) is based on the BACT determination and the dispersion modeling analysis. The dispersion modeling analysis includes startup emissions and requires an emission limit of 2.37 lb/hr to demonstrate compliance (see Attachment B of Appendix C for details).

BACT for the RICE during non-startup operations is established to be 4.43 pounds of CO per hour and 4.49 pounds of VOC per hour. The CO and VOC BACT requirements for startup are to 1) minimize time spent at idle, 2) limit startup periods to no more than 30-minutes, and 3) operation according to manufacturer specifications for minimizing emissions. The CO and VOC emission limits in the permit reflect the BACT determination (4.43 lb/hr and 4.49 lb/hr, respectively).

The GHG BACT for the RICE is established to be 1,100 lb of CO₂ per megawatt (MW)-hour (gross). This limitation applies during all operating conditions (startup and non-startup) and is included directly in the permit as an emission limit.

GHG BACT for the natural gas piping is determined to be an audio, visual, olfactory (AVO) leak detection and repair (LDAR) program with daily monitoring. GHG BACT for the circuit breakers is determined to be a leak rate of 0.5 % or less per year, a density monitor alarm, and an LDAR program.

The full BACT analysis is included in Attachment C of Appendix C.
APPENDIX A

Previous TSDs Issued May 18, 2007, Revised July 13, 2010, October 29, 2010, and January 6, 2017
I. General Comments:

A. Company Information

1. Tucson Electric Power – Irvington Generating Station

2. Source Address: 3950 East Irvington Road, Tucson, AZ 85714.
 Mailing Address: 88 East Broadway Blvd, Mail Stop HQW705, Tucson Arizona or P.O. Box 711, Mail Stop HQW705, Tucson, AZ 85702.

B. Background

PDEQ received an application for the renewal of the air quality permit (#1052) for the TEP – Irvington Generating Station (TEP-IGS) also known as the “H. Wilson Sundt Generating Station” on March 21, 2012. This TSD has been updated for the renewal (See Appendix A for Previous TSD documents).

History

TEP-IGS is an electric utility power generating station that generates electricity by fossil fuel combustion (natural gas, liquid fuel and landfill gas). The original construction of TEP-IGS did not provide any capacity to fire coal as an alternate fuel and was regulated by the Pima County Health Services Department. In 1980 the Department of Energy (DOE) promulgated regulations that required certain large power plants to convert their operations to have the additional capacity to fire coal. Since Arizona Revised Statutes (ARS) provide that the State has original jurisdiction for coal fired electrical generating stations, the Arizona Department of Environmental Quality (ADEQ) assumed oversight from Pima County and implemented the permitting and air quality regulation of TEP-IGS. TEP applied for and received an installation permit for the coal conversion project (See Appendix B for the Arizona Department of Health Services Installation Permit (#1156)).

Although the initial plan was to convert each electric utility steam generating unit (EUSGU or EGU) at the station, only Unit I4 was converted. Since the change was mandated by a government order, NSR requirements were not applicable [Ref. definition for “major modification” in Pima County Code (PCC) and Arizona Administrative Code (AAC) – c.ii]. The NSPS definition for “modification” also exempts mandatory coal conversion projects [Ref. 40 CFR 60.145(e)(4) and CAA Sec 111(a)(8)]. For this reason, 40 CFR Part 60, Subpart D requirements did not apply to Unit I4 or the coal preparation plant.

In the late 1990’s TEP requested that jurisdiction over TEP-IGS be returned to the Pima County Department of Environmental Quality (PDEQ); the transfer was completed shortly after ADEQ issued a 5-year Class I permit to TEP IGS (issue date July 26, 1999). PDEQ’s authority to have jurisdiction over the generating station and any standards adopted by ADEQ affecting coal fired EUSGUs is through a delegation agreement signed between PDEQ and ADEQ. Upon expiration of the permit, PDEQ issued the renewal permit on September 24, 2007.

Changes Since Issuance of Previous Permit

The previous permit was revised in 2010 to include the state mercury rule (SMR) emission monitoring standards applicable to Unit I4 and to extend the SMR compliance deadline to the 12-month calendar year period ending on December 31, 2016. In addition, the permit was revised to incorporate NSPS, Subpart III requirements for an affected emergency generator at the facility (See Appendix C for the previous air quality permit).
A significant permit revision application for Unit I4 was submitted as required on December 26, 2013 to include all applicable MATS emission limits, controls, monitoring, recordkeeping, and reporting requirements as set forth in 40 CFR Part 63, Subpart UUUUU – NESHAP: Coal- and Oil-Fired Electric Utility Steam Generating Units. Along with the application, an extension request was submitted to the director of the Air Quality Division of the Arizona Department of Environmental Quality (ADEQ) in accordance with 40 CFR 63.6(i)(4)(i)(A) for the installation of emission controls for Unit I4. On January 28, 2014 ADEQ approved the one year MATS compliance extension. With respect to Units I1, I2, and I3 the MATS does not apply since they have been operated as existing gas fired units (See Appendix D for the MATS compliance extension letter).

During this renewal, Unit I4 became subject to the Arizona Regional Haze State and Interstate Visibility Transport State Implementation Program requirements for Best Available Retrofit Technology (BART) [Ref. FIP Final Rule, 40 CFR 52.145(j), Promulgated September 3, 2014, Federal Register Vol. 79, No. 170.] This rule is effective October 3, 2014 and requires compliance no later than December 31, 2017 when choosing to combust only natural gas or natural gas combined with landfill gas. TEP-IGS has chosen to comply with this rule by firing natural gas exclusively in Unit I4 and will no longer fire fuel oil in the unit as an alternate fuel (See Appendix D for letter on selection of regional haze limits).

During the permit renewal process, TEP discovered that the language in 40 CFR §52.145(j)(8)(i)(A) and (B) (see below), is problematic for monitoring NOx emissions from Sundt Unit 4 (a natural gas-fired boiler). TEP requested assistance from EPA Region 9 to allow Sundt Unit 4 to select acceptable continuous emission monitoring options allowed by 40 CFR 75.

§52.145(j)(8)(i) Continuous emission monitoring system. (A) At all times after the compliance date specified in paragraph (j)(6) of this section, the owner/operator of the unit shall maintain, calibrate, and operate CEMS, in full compliance with the requirements found at 40 CFR part 75, to accurately measure NOX, diluent, and stack gas volumetric flow rate from the unit. All valid CEMS hourly data shall be used to determine compliance with the emission limitation for NOX in paragraph (j)(4) of this section. When the CEMS is out-of-control as defined by 40 CFR part 75, the CEMS data shall be treated as missing data and not used to calculate the emission average. Each required CEMS must obtain valid data for at least ninety (90) percent of the unit operating hours, on an annual basis.

(8)(i)(B) The owner/operator of the unit shall comply with the quality assurance procedures for CEMS found in 40 CFR part 75. In addition to these part 75 requirements, relative accuracy test audits shall be calculated for both the NOX pounds per hour measurement and the heat input measurement. The CEMS monitoring data shall not be bias adjusted. Calculations of relative accuracy for lb/hr of NOX and heat input shall be performed each time the CEMS undergo relative accuracy testing.

It was agreed by TEP, PDEQ, and EPA Region 9 that the language for continuous emission monitoring systems in §52.145(j)(8)(i)(A) and (B) (above) should be corrected to allow TEP to select a monitoring approach that is consistent with the full text of 40 CFR Part 75. There are several problems with the current language in §52.145(j)(8)(i)(A) and (B). The first is that it contains specific language which limits TEP from various monitoring options that are allowed under the full text of 40 CFR Part 75. The second problem is that it specifically requires a stack gas volumetric flow monitor, and includes specific requirements for RATA testing which assume a stack gas volumetric flow monitor is in use which is contrary to the requirements of 40 CFR 75. In addition, the NOX-Diluent CEMS RATA unit of measurement should be lbs/mmBtu and not lb/hr. In Part 75, for a NOX-diluent monitor system RATA the unit of measurement is lbs/mmBtu. Once again, it would be best to have language that Sundt Unit 4 is required to follow the Part 75 requirements for performing RATAs on the NOX-diluent system.
Sundt Unit 4 has selected the better-than BART option meaning that it is now a natural gas fired unit and has ceased burning coal. For a natural gas-fired boiler a stack gas volumetric flow monitor is not required by 40 CFR 75 nor is it needed to determine SO2 or NOX rate. For example, the current Part 75 monitoring approach for Sundt Unit 3, which is a natural gas-fired unit, consists of a NOX monitor, a diluent monitor, and fuel flow monitoring. The heat input is calculated using 40 CFR 75 equation D-6, the NOX rate is calculated using 40 CFR 75 equation F-5 and the SO2 emission rate is calculated using equation D-5. Equations D-5, D-6 and F-5 (see equations below) do not require a stack gas volumetric flow monitor; instead a fuel flow monitor is used. For Sundt Unit 4, the monitoring approach used by Sundt Unit 3 would not be allowed based on the current language in §52.145(j)(8)(i)(A) and (B). TEP is considering the use of a similar monitoring approach in the future for Unit 4, but the specific language found in §52.145(j)(8)(i)(A) and (B) will need to be corrected to allow the monitoring approach.

Equation D-5

\[
\text{SO}_2\text{rate} = \text{ER} \times \text{HI rate}
\]

Where:

- \(\text{SO}_2\text{rate} \) = Hourly mass emission rate of SO2 from combustion of a gaseous fuel, lb/hr.
- \(\text{ER} \) = SO2 emission rate from section 2.3.1.1 or 2.3.2.1.1, of appendix D, lb/mmBtu.
- \(\text{HI rate} \) = Hourly heat input rate of a gaseous fuel, calculated using procedures in section 3.4.1 of this appendix, in mmBtu/hr.

Equation D-6

\[
\text{HI rate-gas} = \text{GAS rate} \times \text{GCV gas} ÷ 10^6
\]

Where:

- \(\text{HI rate-gas} \) = Hourly heat input rate from combustion of the gaseous fuel, mmBtu/hr.
- \(\text{GAS rate} \) = Average volumetric flow rate of fuel, for the portion of the hour in which the unit operated, 100 scf/hr.
- \(\text{GCV gas} \) = Gross calorific value of gaseous fuel, Btu/100 scf. \(10^6 \) = Conversion of Btu to mmBtu.

Equation F-5

\[
E = K \: C_h \: F \left(20.9 \div (20.9 - \%O_2) \right)
\]

Where:

- \(K \) = 1.194 \times 10^{-7} (\text{lb/dscf})/\text{ppm NOX}.
- \(E \) = Pollutant emissions during unit operation, lb/mmBtu.
- \(C_h \) = Hourly average pollutant concentration during unit operation, ppm.
- \(\%O_2 \) = Oxygen volume during unit operation (expressed as percent O2).

The NOX lb/mmBtu (Eq. F-5) can be multiplied by the hourly heat input mmbtu/hr (Eq. D-6) to obtain the hourly NOX emission rate, lbs/hr.
On August 19, 2016, a meeting between TEP, PDEQ, and EPA Region 9 determined that the following language should be included in the Title V renewal. It was agreed by all that the language was appropriate and would serve as a technical correction to replace language in §52.145(j)(8)(i)(A) and (B) for the better-than BART option. For this reason, the following language has been proposed to allow the facility to utilize all applicable Part 75 monitoring approaches.

(8)(i) Continuous emission monitoring system. (A) At all times after the compliance date specified in paragraph (j)(6) of this section, the owner/operator of the unit shall maintain, calibrate, and operate CEMS, in full compliance with the requirements found at 40 CFR part 75. All valid CEMS hourly data shall be used to determine compliance with the emission limitation for NOX in paragraph (j)(4) of this section. When the CEMS is out-of-control as defined by 40 CFR part 75, the CEMS data shall be treated as missing data and not used to calculate the emission average. Each required CEMS must obtain valid data for at least ninety (90) percent of the unit operating hours, on an annual basis.

(8)(i)(B) The owner/operator of the unit shall comply with the quality assurance procedures for CEMS found in 40 CFR part 75. The CEMS monitoring data shall not be bias adjusted.

It was also agreed during the August 19, 2016 meeting, that EPA Region 9 would review both the TSD, and the draft Permit language prior to the public comment period.

Finally, during this renewal, PDEQ confirmed that Unit I4 permanently switched to firing only natural gas and landfill gas and the operation of the coal and fly ash handling equipment associated with unit I4 has been suspended. In addition the previously permitted auxiliary boiler at the facility has been decommissioned and is no longer in operation.

C. Attainment Classification

TEP-IGS is located in a region that is designated as attainment for all criteria pollutants.

II. Source Description

A. Process Description

TEP-IGS generates electricity using two fossil fuel fired processes: (1) Steam Turbine Cycle and (2) Combustion Turbine Cycle. In addition to these, there are several support facilities, some of which contain applicable requirements that are addressed by the permit.

1. Steam Turbine Cycle

There are three distinct units in this process: (1) Boiler; (2) Turbine; and (3) Generator.

a. Boiler

Water is converted to steam via combustion of fuel and heat transfer. Steam is routed to turbines while the exhaust gasses and pollutants produced during combustion are released to the ambient atmosphere after passing through air pollution controls (if required). The concentrations of pollutants released into the atmosphere depend on the fuel fired. Typical pollutants are Particulate Matter (PM), Sulfur Dioxides (SO2), Nitrogen Oxides (NOX), Carbon Monoxide (CO), and Volatile Organic Compounds (VOC). Specific pollutant emission rates are provided in Section IV of this document.
b. Turbine

Steam exiting the boilers enters a turbine unit. The high-pressure steam passes through rotating blades which cause the turbine shaft to rotate converting the thermal energy of the steam into mechanical energy. After passing through the turbine, the steam is sent through a condenser and is recirculated to the boiler. The only process material used by the turbine unit is steam; thus there are no emissions.

c. Generator

The turbine drives the generator which, in turn, produces electrical energy. There are no process materials and no emissions from these units.

2. Combustion Turbine Cycle

There are two distinct units in this process: (1) Combustion Turbine; and (2) Generator

a. Combustion Turbine,

Fuel and air are mixed and injected into a combustion chamber where they are ignited. The hot combustion gases pass over the turbine blades. The resulting movement of the blades causes the shaft to rotate. Exhaust gasses and pollutants produced during combustion are released to the ambient atmosphere after passing through air pollution controls (if required). Emissions resulting from combustion typically include PM, SO$_2$, NO$_x$, CO and VOC. Representative emission rates are provided in Section IV of this document.

b. Generator.

The turbine drives the generator which, in turn, produces electrical energy. There are no process materials and no emissions from these units.

3. Support Facilities

Other equipment, operations and process that function as support facilities are turbine starter engines, emergency generators, and cooling towers. Pollutants include PM, SO$_2$, NOx, CO, and VOC.

B. Operating Capacity and Schedule

TEP-IGS requires the flexibility to operate 24 hours a day, 365 days a year. The net capacity of each power production unit is as follows:

1. Fossil Fuel Fired Steam Generating Units:

 a. UNIT I1 – 81 MW
 b. UNIT I2 – 81 MW
 c. UNIT I3 – 104 MW
 d. UNIT I4 – 156 MW

2. Stationary Combustion Turbines:

 a. UNIT IGT1 – 24 MW
 b. UNIT IGT2 – 24.5 MW
 c. UNIT IGT3 – < 25 MW (Reserved for future installation See Alternate Operating Scenarios)
C. Applicability Categories

The following categories are addressed by the permit:

1. Facility General Provisions
2. Electric Steam Generating Units EUG’s (Units - I1, I2 and I3)
3. Electric Steam Generating Units (I4)
4. Unit I4 – Regional Haze Implementation Plan
5. Cooling Towers (I1E, I2D, I3D, and I4E)
6. Stationary Rotating Machinery (IGT1, IGT1A, IGT2, and IGT2A)
7. Emergency Generators – Local Requirements (EGEN1 and EGEN2)
8. NESHAP Subpart ZZZZ Requirements for Emergency Generators (EGEN1, IGT1A, and IGT2A)
9. NSPS Emergency Generator Requirements (EGEN2)
10. Nonpoint Fugitive Dust Sources
11. Use of Paints
12. Abrasive Blasting

D. Air Pollution Control Equipment

Air Pollution Control Equipment is required for the following equipment and processes:

1. UNIT IGT3

 Upon purchasing the unit, the Permittee is required to install and operate a water injection system or its equivalent to control NOx emissions.

III. Regulatory History

TEP is currently in compliance with permit and regulatory requirements.

A. Testing & Inspections

 Inspections have been conducted regularly since PDEQ took over jurisdiction from ADEQ. The last completed inspection was concluded in 2014.

B. Excess Emissions

 There have been no Notices of Violations for any excess emissions.

IV. Emission Estimates

The following table summarizes IGS annual potential to emit of air pollutants by each emission unit and by facility-wide total. The emission estimate is to establish “major source” status of IGS pursuant to CAA Sec 501(2). Other use with the estimate may include comparing source potential-to-emit with emissions inventory and test data, or with emission rates allowable by relevant standards. This emission estimate is not meant to establish any baseline emission levels. These emission figures are not meant to be emission limitations of any form.

The majority of IGS air emissions come from the boiler units. Although natural gas is the primary fuel consumed by the boilers, Units I1-I3 are permitted to co-fire natural gas with fuel oils and Unit I4 is permitted to co-fire natural gas with landfill gas. To accommodate the co-firing scenario, a fuel mix of 85% natural gas and 15% diesel was used in calculating emissions for Units I1-I3. Similarly, a fuel mix of 95% natural gas and 5% landfill gas was used for Unit I4. Other assumptions are presented in the summary table’s footnotes.
For Title V air permitting purposes, the threshold to trigger a major source status is 100 tpy of any criteria air pollutant, 10 tpy of any single hazardous air pollutant (HAP), 25 tpy of any HAPs combination, 100,000 tpy CO2 equivalent emissions of greenhouse gases. As shown in the summary table, IGS is a major Title V source for the following air pollutants: PM$_{10}$, PM$_{2.5}$, SO$_2$, NO$_X$, CO, CO$_{2e}$, VOC, and HAPs.
This summary table only presents PTE results from the operating scenario when, on an annual basis, Boilers I1-I3 burn a blend of 85% natural gas and 15% fuel oil #2, Boiler I4 burns a blend of 95% natural gas and 5% landfill gas, and all turbine units burn natural gas. For Title V air permitting purposes, the major source threshold for a criteria air pollutant is 100 tpy and major HAPs source threshold is 10 tpy of a single HAP or 25 tpy of any HAPs combination.

(1) Almost all PTE calculations are performed using AP-42 emission factors except where a permit limit becomes the limiting factor. In that case, the permit limit is to be used for the emission calculation.

(2) This summary table only presents PTE results from the operating scenario when, on an annual basis, Boilers I1-I3 burn a blend of 85% natural gas and 15% fuel oil #2, Boiler I4 burns a blend of 95% natural gas and 5% landfill gas, and all turbine units burn natural gas.

For Title V air permitting purposes, the major source threshold for a criteria air pollutant is 100 tpy and major HAPs source threshold is 10 tpy of a single HAP or 25 tpy of any HAPs combination.
V. Applicable Requirements

A. Standards addressed by the permit:

1. Pima County State Implementation Plan (SIP):

 Rule 301 Planning Construction, or Operating without a Permit
 Rule 302 Non-Compliance with Applicable Standards
 Rule 315 Roads and Streets
 Rule 316 Particulate Materials
 Rule 318 Vacant Lots and Open Spaces
 Rule 321 Standards and Applicability
 Rule 343 Visibility Limiting Standard
 Rule 344 Odor Limiting Standards

2. Code of Federal Regulations Title 40:

 Part 60 Subpart KKKK Standards of Performance for Stationary Combustion Turbines (IGT3)
 Part 60 Subpart GG Standards of Performance for Stationary Gas Turbines (IGT3)
 Part 60 Appendix B Performance Specifications
 Part 63 Subpart ZZZZ NESHAPS for Stationary Reciprocating Internal Combustion Engines
 Part 63 Subpart Q NESHAPS for Industrial Process Cooling Towers
 Part 75 Continuous Emission Monitoring
 Part 75 Appendix A Specifications and Test Procedures
 Part 75 Appendix B Quality Assurance and Quality Control
 Part 75 Appendix D Optional SO₂ Emissions Data Protocol for Gas and Oil Fired Units
 Part 75 Appendix F Conversion Procedures
 Part 75 Appendix G Determination of CO₂ Emissions

3. Pima County Code (PCC) Title 17, Chapter 17.16:

 17.12.060 Existing Source Emission Monitoring
 17.16.020 Noncompliance with Applicable Standards
 17.16.030 Odor Limiting Standards
 17.16.040 Standards and Applicability (Includes NESHAP)
 17.16.050 Visibility Limiting Standards
 17.16.060 Fugitive Dust Producing Activities
 17.16.080 Vacant Lots and Open Spaces
 17.16.090 Roads and Streets
 17.16.100 Particulate Materials
 17.16.110 Storage Piles
 17.16.130 Applicability
 17.16.160 Standards of Performance for Fossil-Fuel Fired Steam Generators and General Fuel Burning Equipment
 17.16.165 Standards of Performance for Fossil-Fuel Fired Industrial and Commercial Equipment
 17.16.340 Standards of Performance for Stationary Rotating Machinery
 17.16.430 Standards of Performance for Unclassified Sources
 17.16.590 Permit Requirements for Sources Located in Attainment and Unclassifiable Areas

4. Installation Permit #1156 – October 14, 1981 by Arizona Department of Health Services (Appendix B)
B. Standards which are not applicable:

1. PSD/NSR

UNIT I4 (manufactured in 1964) was originally designed to fire natural gas and oil. This was permitted by Pima County till the early ‘80s. In 1980 the Department of Energy promulgated regulations that required certain large power plants to convert their operations to additionally have the capacity to burn coal. TEP applied for an installation permit for the coal conversion project. Although the initial plan was to convert all four fossil fuel-fired steam-generating units (I1 – I4), only UNIT I4 was converted. Since this change was mandated by a government order, NSR requirements are not applicable [PCC 17.16.340.A, “major modification” – c.ii & AAC R18-2-101”major modification” – c.ii].

2. Code of Federal Regulations, Title 40

C. Promulgated standards which will be or may be applicable not addressed by the permit:

 a. Potentially Applicable Units: IGT1, IGT2, & IGT3. Applicability includes stationary combustion turbines at major sources of HAP (63.6085).
 b. The promulgation date was March 5, 2004.
 c. The initial notification date was June 5, 2004.
 d. The compliance date is March 5, 2007.
 e. No initial notification is required for the existing turbines at TEP-Irvington.

D. Promulgated standards which will be or may be applicable after issuance of the permit that have been addressed by the permit:

1. 40 CFR 52.145(j) - Source-Specific Federal Implementation Plan for Regional Haze at H. Wilson Sundt Generating Station (TEP-IGS)
 a. Applicable to Unit I4. Compliance with the NOX, SO2, and PM10 emission limitations are required by December 31, 2017.

 a. Potentially applicable units; I1, I2, & I3. The units will become subject to NESHAP 40 CFR 63 Subpart UUUUU as existing oil fired units if liquid oil is fired in the units for more than 10.0 percent of the average annual heat input during any 3 calendar years or for more than 15.0 percent of the annual heat input during any calendar year. The permit requires the Permittee to submit a permit revision if units become oil fired units in accordance with 40 CFR Part 75 and 40 CFR Part 63, Subpart UUUUU.
VI. Previous Permit Conditions

The following standards and conditions were removed from the previous permit due to the coal and oil firing being discontinued in Unit I4 and otherwise not necessary [citations refer to the previous permit (See Previous Permit – Appendix C)]:

1. Section II.A.2.b Unit I4 Sulfur Dioxide Standard – For Fuel Oil Firing

2. Section II.A.5 is now streamlined in Section I of the renewal permit.

3. Section II.C standards applicable to the Auxiliary Boiler and corresponding monitoring, recordkeeping, reporting requirements. [V.C, & VI.C]

4. Section I.I.E standards applicable to the coal preparation plant and corresponding monitoring, recordkeeping, reporting requirements, and testing requirements. [III.B, IV.C, V.D]

5. Section II.F standards applicable to the fly ash handling systems (FAHS). [III.C, IV.D, V.E]

6. Section II.A.5.c.i.(A), (C), & (F) concerning the use of coal or fuel oil or their co-firing as fuels in Unit I4.

7. Section II.A.5.c.ii condition specifying the max sulfur content of coal fired.

8. Section III.A specifying the requirement operate a baghouse on Unit I4 to capture particulate emissions resulting from the combustion of coal fuel and the corresponding compliance assurance monitoring, recordkeeping, reporting and testing requirements as a result of Unit I4 firing coal. [IV.A.2., VI.A.1 & 2, VII.A.2].

9. Section III.D.1 & 2 relating to the Control Officers right to require additional air pollution control equipment as deemed necessary for Unit I4, the Coal Preparation Plant and Fly-Ash Handling Systems and any additional air pollution control equipment.

10. Section IV.2 Particulate Matter – Compliance Assurance Monitoring for Unit I4 (CAM)

11. Section IV.A.3 Sulfur Dioxide and Nitrogen Oxides – Unit I4;

VII. Applicability Determinations

1. No Periodic Method 9 Opacity Monitoring When Firing Gaseous Fuels.

PDEQ has not required the Permittee to periodically monitor opacity using Method 9 methods on gaseous fuel fired boilers, turbines and other indirect heated equipment since the opacity of emissions while firing gaseous fuel is inherently low.

2. Use of Paints.

PDEQ has determined that PCC 17.16.400.C.5 does not apply to the Permittee since facility does not meet the definition of a facility engaged in the industrial coating of miscellaneous metal parts and products under SIC Code Major Group 33 through 39.
APPENDIX A

Previous TSD Issued May 18, 2007, Revised July 13, 2010 & October 29, 2010
I. GeneralComments:

A. Company Information

1. Tucson Electric Power – Irvington Generating Station

2. Source Address: 3950 East Irvington Road, Tucson, AZ 85714.
 Mailing Address: 1 South Church Ave, P.O. Box 711, Tucson, AZ 85702.

B. Background

This is a revised TSD amended to add the requirement for monitoring Mercury emissions per the ADEQ Consent Order entered into with TEP on February 18, 2009. Specific requirements can be found in the Addendum on page 30.

Tucson Electric Power – Irvington Generating Station (TEP-IGS) produces electricity by fossil fuel combustion (coal, natural gas, liquid fuel, and landfill gas). Originally, TEP-IGS did not have the capacity to fire coal and was regulated by Pima County Health Services.

However, in 1980 the Department of Energy promulgated regulations that required certain large power plants to convert their operations to additionally have the capacity to burn coal. TEP applied for and received an installation permit for the coal conversion project (see Appendix C for the Arizona Department of Health Services Installation Permit #1156). The Arizona Department of Environmental Quality (ADEQ) issued this permit and assumed oversight from Pima County (as ARS 49-402.A.4 provides original jurisdiction to the State for Coal fired electrical generating stations).

Although the initial plan was to convert all four fossil fuel-fired steam generating units (I1 – I4), only Unit I4 was converted. Since this change was mandated by a government order, NSR requirements were not applicable [PCC 17.16.340.A, “major modification” – c.ii & AAC R18-2-101 “major modification” – c.ii]. The NSPS definition for “modification” also exempts mandatory coal conversion projects [40 CFR 60.14(e)(4) and CAA Sec 111(a)(8)]. Therefore, NSPS (Subpart D) requirements are not applicable to Unit I4. This exemption also applied to the coal preparation plant as it was constructed during the coal conversion project.

In the late 1990’s TEP requested that jurisdiction over TEP-IGS be returned to Pima County Department of Environmental Quality, (PDEQ); the transfer was completed shortly after ADEQ issued a 5-year Class I permit to TEP IGS (issue date July 26, 1999). PDEQ issued a significant revision on May 15, 2001 for the installation of a new, simple cycle combustion turbine to be added as a peaking unit. Via emission limitations this did not qualify as a major modification. This renewal permit is the first to be drafted and issued by PDEQ.

C. Attainment Classification
TEP-IGS is located in a region that is designated as attainment for all criteria pollutants.

II. Source Description

A. Process Description

TEP-IGS generates electricity using two fossil fuel fired processes: (1) Steam Turbine Cycle and (2) Combustion Turbine Cycle. In addition to these, there are several support facilities, some of which contain applicable requirements that are addressed by the permit.

1. Steam Turbine Cycle

There are three distinct units in this process: (1) Boiler; (2) Turbine; and (3) Generator.

a. Boiler

Water is converted to steam via combustion of fuel and heat transfer. Steam is routed to turbines while the exhaust gasses and pollutants produced during combustion are released to the ambient atmosphere after passing through air pollution controls (if required). The concentrations of pollutants released into the atmosphere depend on the fuel fired. Typical pollutants are Particulate Matter (PM), Sulfur Dioxides (SO$_2$), Nitrogen Oxides (NOx), Carbon Monoxide (CO), and Volatile Organic Compounds (VOC). Specific pollutant emission rates are provided in Section IV of this document.

b. Turbine

Steam exiting the boilers enters a turbine unit. The high-pressure steam passes through rotating blades which cause the turbine shaft to rotate converting the thermal energy of the steam into mechanical energy. After passing through the turbine, the steam is sent through a condenser and is recirculated to the boiler. The only process material used by the turbine unit is steam; thus there are no emissions.

c. Generator

The turbine drives the generator which, in turn, produces electrical energy. There are no process materials and no emissions from these units.

2. Combustion Turbine Cycle

There are two distinct units in this process: (1) Combustion Turbine; and (2) Generator

a. Combustion Turbine,

Fuel and air are mixed and injected into a combustion chamber where they are ignited. The hot combustion gases pass over the turbine blades. The resulting movement of the blades causes the shaft to rotate. Exhaust gasses and pollutants produced during combustion are released to the ambient atmosphere after passing through air pollution controls (if required). Emissions resulting from combustion typically include PM, SO$_2$, NOx, CO and VOC. Representative emission rates are provided in Section IV of this document.
b. Generator.

The turbine drives the generator which, in turn, produces electrical energy. There are no process materials and no emissions from these units.

3. Support Facilities

Other equipment, operations and process that function as support facilities are turbine starter engines, other smaller boilers, cooling towers, the coal preparation plant and the fly-ash handling systems. Pollutants include PM, SO₂, NOₓ, CO, and VOC.

B. Operating Capacity and Schedule

TEP-IGS requires the flexibility to operate 24 hours a day, 365 days a year. The net capacity of each power production unit is as follows:

1. Fossil Fuel Fired Steam Generating Units:
 a. UNIT I1 – 81.02 MW
 b. UNIT I2 – 80.53 MW
 c. UNIT I3 – 104.45 MW
 d. UNIT I4 – 156.1 MW

2. Stationary Combustion Turbines:
 a. UNIT IGT1 – 23.9 MW
 b. UNIT IGT2 – 24.5 MW
 c. UNIT IGT3 – <25 MW

C. Applicability Categories

The following categories are addressed by the permit:

1. Fossil Fuel Fired Steam Generators (Steam Turbine Cycle Boilers)
2. Stationary Rotating Machinery (Stationary Combustion Turbines & Diesel Turbine Starter Engines).
3. Auxiliary Boiler
4. Cooling Towers
5. Coal Preparation Plant & Fly-Ash Handling Systems
6. Open Areas, Roadways, & Streets
7. Alternate Operating Scenario for Stationary Rotating Machinery (Stationary Combustion Turbines & Diesel Turbine Starter Engines (IGT3)).
D. Air Pollution Control Equipment

Air Pollution Control Equipment is required for four pieces of equipment and processes: (1) UNIT I4; (2) UNIT IGT3; (3) the Coal Preparation Plant; and (4) the Fly-Ash Handling Plant.

1. UNIT I4

The Permittee is required to install and maintain a baghouse on UNIT I4 to capture PM emissions when coal is fired (exclusively or in combination with other fuels).

2. UNIT IGT3

Upon purchasing the unit, the Permittee is required to install and operate a water injection system or its equivalent to control NOx emissions.

3. The Coal Preparation Plant

The Permittee is required to install and operate various enclosures, dust collectors, and other fugitive dust controls to limit PM emissions.

4. The Fly-Ash Handling Systems

The Permittee is required to install and operate various enclosures, dust collectors, and other fugitive dust controls to limit PM emissions.

III. Regulatory History

TEP is currently in compliance with permit and regulatory requirements.

A. Testing & Inspections

Inspections have been conducted regularly since PDEQ took over jurisdiction from ADEQ. The last completed inspection was concluded in 2006.

B. Excess Emissions

There have been no Notices of Violations for any excess emissions.

IV. Emission Estimates

The following emission estimates have been carried over from previous TSDs. Actual emissions are provided by Continuous Emissions Monitoring System (CEMS) data. These values may be used for the following purposes:

(i). Ascertainig “major source” status of IGS pursuant to CAA Sec 501 (2);
(ii). Comparing source potential-to-emit with emission rates allowable by relevant standards; and
(iii). Comparing source potential-to-emit with emissions inventory and test data.
This comparison serves as a summary of existing information on emissions from TEP-IGS. These emission calculations are not meant to establish any baseline emission levels. These emission figures (except for the ALLOWABLE emissions) are not meant to be emission limitations of any form. The following tables summarize the potential to emit (PTE), allowable emissions, test results, and the emissions inventory (EI) data. The emission factors used to calculate the potential to emit are from AP-42 (1/95 ed.).

A. Fossil Fuel Fired Steam Generators

1. UNITS I1 & I2 Boilers (each)

<table>
<thead>
<tr>
<th>Fuel</th>
<th>Pollutant</th>
<th>PTE (lb/hr)</th>
<th>PTE (TPY)</th>
<th>Allowable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Gas</td>
<td>PM</td>
<td>4</td>
<td>17.5</td>
<td>172 lb/hr(^1)</td>
</tr>
<tr>
<td></td>
<td>NOx</td>
<td>220</td>
<td>963.5</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>SOx</td>
<td>0.5</td>
<td>2.1</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>CO</td>
<td>32</td>
<td>140</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>VOC</td>
<td>1.4</td>
<td>6</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>THAP</td>
<td>0.4</td>
<td>1.84</td>
<td>NA</td>
</tr>
<tr>
<td>Co-Firing Natural Gas with Landfill Gas</td>
<td>PM</td>
<td>7</td>
<td>31</td>
<td>172 lb/hr(^2)</td>
</tr>
<tr>
<td></td>
<td>NOx</td>
<td>220</td>
<td>963.5</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>SOx</td>
<td>3.4</td>
<td>15</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>CO</td>
<td>34.0</td>
<td>149</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>VOC</td>
<td>1.4</td>
<td>6</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>THAP</td>
<td>0.4</td>
<td>1.84</td>
<td>NA</td>
</tr>
<tr>
<td>Liquid Fuel (#6 Fuel Oil)</td>
<td>PM</td>
<td>61</td>
<td>269</td>
<td>172 lb/hr(^3)</td>
</tr>
<tr>
<td></td>
<td>NOx</td>
<td>224</td>
<td>982</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>SOx</td>
<td>754</td>
<td>3303</td>
<td>1 lb SO(_2)/MMBtu – 3 hr average (3504 tpy)(^3)</td>
</tr>
<tr>
<td></td>
<td>CO</td>
<td>26.7</td>
<td>117</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>VOC</td>
<td>4.1</td>
<td>18</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>THAP</td>
<td>0.8</td>
<td>3.3</td>
<td>NA</td>
</tr>
<tr>
<td>Co-Firing Liquid Fuel (#6 Fuel Oil) with Landfill Gas</td>
<td>PM</td>
<td>61</td>
<td>269</td>
<td>172 lb/hr(^4)</td>
</tr>
<tr>
<td></td>
<td>NOx</td>
<td>224</td>
<td>982</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>SOx</td>
<td>754</td>
<td>3303</td>
<td>1 lb SO(_2)/MMBtu – 3 hr average (3504 tpy)(^3)</td>
</tr>
<tr>
<td></td>
<td>CO</td>
<td>26.7</td>
<td>117</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>VOC</td>
<td>4.1</td>
<td>18</td>
<td>NA</td>
</tr>
</tbody>
</table>

\(^1\) 17.16.160.C
\(^2\) 17.16.160.C
\(^3\) 17.16.160.C
\(^4\) 17.16.160.D.1
\(^5\) 17.16.160.C.
\(^6\) 17.16.160.D.1
<table>
<thead>
<tr>
<th>Fuel</th>
<th>Pollutant</th>
<th>PTE (lb/hr)</th>
<th>PTE (TPY)</th>
<th>Allowable</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>THAP</td>
<td>0.8</td>
<td>3.3</td>
<td>NA</td>
</tr>
</tbody>
</table>

2. UNIT I3 Boiler

<table>
<thead>
<tr>
<th>Fuel</th>
<th>Pollutant</th>
<th>PTE (lb/hr)</th>
<th>PTE (TPY)</th>
<th>Allowable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Gas</td>
<td>PM</td>
<td>5.3</td>
<td>23</td>
<td>213 lb/hr(^7) (933 tpy)</td>
</tr>
<tr>
<td></td>
<td>NOx</td>
<td>287</td>
<td>1257</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>SOx</td>
<td>0.6</td>
<td>2.7</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>CO</td>
<td>41.5</td>
<td>182</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>VOC</td>
<td>1.8</td>
<td>7.8</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>THAP</td>
<td>0.54</td>
<td>2.37</td>
<td>NA</td>
</tr>
<tr>
<td>Liquid Fuel ((#6 Fuel Oil))</td>
<td>PM</td>
<td>80</td>
<td>350</td>
<td>213 lb/hr(^8) (933 tpy)</td>
</tr>
<tr>
<td></td>
<td>NOx</td>
<td>292</td>
<td>1280</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>SOx</td>
<td>983</td>
<td>4307</td>
<td>1 lb SO(_2)/MMBtu – 3 hr average (3504 tpy)(^9)</td>
</tr>
<tr>
<td></td>
<td>CO</td>
<td>34.7</td>
<td>152</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>VOC</td>
<td>5.3</td>
<td>23</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>THAP</td>
<td>1.0</td>
<td>4.3</td>
<td>NA</td>
</tr>
</tbody>
</table>

3. UNIT I4 Boiler

<table>
<thead>
<tr>
<th>Fuel</th>
<th>Pollutant</th>
<th>PTE (lb/hr)</th>
<th>PTE (TPY)</th>
<th>Allowable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Gas</td>
<td>PM</td>
<td>8.5</td>
<td>37</td>
<td>311 lb/hr(^{10}) (1362 tpy)</td>
</tr>
<tr>
<td></td>
<td>NOx</td>
<td>468</td>
<td>2050</td>
<td>0.7 lb NO(_2)/MMTU – 3 hr average (5218 tpy)(^{11})</td>
</tr>
<tr>
<td></td>
<td>SOx</td>
<td>1.0</td>
<td>4.5</td>
<td>1 lb SO(_2)/MMBtu – 3 hr average (3504 tpy)(^{12})</td>
</tr>
<tr>
<td></td>
<td>CO</td>
<td>68</td>
<td>298</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>VOC</td>
<td>3.0</td>
<td>13</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>THAP</td>
<td>0.9</td>
<td>3.85</td>
<td>NA</td>
</tr>
<tr>
<td>Liquid Fuel ((#6 Fuel Oil))</td>
<td>PM</td>
<td>80</td>
<td>350</td>
<td>311 lb/hr(^{13}) (1362 tpy)</td>
</tr>
</tbody>
</table>

\(^7\) 17.16.160.C
\(^8\) 17.16.160.C
\(^10\) 17.16.160.C
\(^11\) Installation Permit #1156 Condition 5.
\(^12\) Installation Permit #1156 Condition 5.
\(^13\) 17.16.160.C
Table 1: Pollutant Emission Limits

<table>
<thead>
<tr>
<th>Fuel</th>
<th>Pollutant</th>
<th>PTE (lb/hr)</th>
<th>PTE (TPY)</th>
<th>Allowable</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NOx</td>
<td>477</td>
<td>2090</td>
<td>0.7 lb NO₂/MMTU – 3 hr average (5218 tpy)¹⁴</td>
</tr>
<tr>
<td></td>
<td>SOx</td>
<td>1604</td>
<td>7029</td>
<td>1 lb SO₂/MMBtu – 3 hr average (3504 tpy)¹⁵</td>
</tr>
<tr>
<td></td>
<td>CO</td>
<td>56.8</td>
<td>249</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>VOC</td>
<td>8.0</td>
<td>35</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>THAP</td>
<td>1.6</td>
<td>7</td>
<td>NA</td>
</tr>
<tr>
<td>Solid Fuel (Coal)</td>
<td>PM</td>
<td>41.1</td>
<td>181¹⁶</td>
<td>223 lb/hr (977 tpy)¹⁷</td>
</tr>
<tr>
<td></td>
<td>NOx</td>
<td>883</td>
<td>3866</td>
<td>0.7 lb NO₂/MMTU – 3 hr average (5218 tpy)²⁸</td>
</tr>
<tr>
<td></td>
<td>SOx</td>
<td>1164</td>
<td>5099</td>
<td>1 lb SO₂/MMBtu – 3 hr average (3504 tpy)²⁹</td>
</tr>
<tr>
<td></td>
<td>CO</td>
<td>30.6</td>
<td>134</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>VOC</td>
<td>3.7</td>
<td>16</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>THAP</td>
<td>15</td>
<td>65.7</td>
<td>NA</td>
</tr>
</tbody>
</table>

B. Stationary Rotating Machinery

1. **UNITS IGT1, IGT2, & IGT3 (each, except for IGT3 see note under fuel below)**

<table>
<thead>
<tr>
<th>Fuel</th>
<th>Pollutant</th>
<th>PTE (lb/hr)</th>
<th>PTE (TPY)</th>
<th>Allowable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Gas</td>
<td>PM</td>
<td>7.8</td>
<td>34</td>
<td>103 lb/hr (450 tpy)²⁰</td>
</tr>
<tr>
<td></td>
<td>NOx</td>
<td>176</td>
<td>771</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>SOx</td>
<td>0.23</td>
<td>1.01</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>CO</td>
<td>43.8</td>
<td>192</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>VOC</td>
<td>9.6</td>
<td>42</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>THAP</td>
<td>0.2</td>
<td>0.7</td>
<td>NA</td>
</tr>
<tr>
<td>Liquid Fuel (#2 Fuel Oil)</td>
<td>PM</td>
<td>15</td>
<td>66</td>
<td>103 lb/hr (450 tpy)²¹</td>
</tr>
<tr>
<td></td>
<td>NOx</td>
<td>273</td>
<td>1196</td>
<td>NA</td>
</tr>
</tbody>
</table>

¹⁴ Installation Permit #1156 Condition 5.
¹⁵ Installation Permit #1156 Condition 5.
¹⁶ With baghouse. Without controls, 36235 tpy PM.
¹⁷ 17.16.160.C
¹⁸ Installation Permit #1156 Condition 5.
¹⁹ Installation Permit #1156 Condition 5.
²⁰ 17.16.340.C.
²¹ 17.16.340.C.
<table>
<thead>
<tr>
<th>Fuel</th>
<th>Pollutant</th>
<th>PTE (lb/hr)</th>
<th>PTE (TPY)</th>
<th>Allowable</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SOx</td>
<td>158</td>
<td>692</td>
<td>1 lb/MMBtu (1712 tpy)22</td>
</tr>
<tr>
<td></td>
<td>CO</td>
<td>18.9</td>
<td>83</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>VOC</td>
<td>6.6</td>
<td>29</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>THAP</td>
<td>1.1</td>
<td>5</td>
<td>NA</td>
</tr>
</tbody>
</table>

2. **UNITS IGT1A, IGT2A, & IGT3A (each)**

<table>
<thead>
<tr>
<th>Fuel</th>
<th>Pollutant</th>
<th>PTE (lb/hr)</th>
<th>PTE (TPY)</th>
<th>Allowable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diesel Fuel</td>
<td>PM</td>
<td>Negligible</td>
<td>0.02</td>
<td>103 lb/hr (450 tpy)23</td>
</tr>
<tr>
<td></td>
<td>NOx</td>
<td>Negligible</td>
<td>1.1</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>SOx</td>
<td>Negligible</td>
<td>0.02</td>
<td>1 lb/MMBtu (7 tpy)24</td>
</tr>
<tr>
<td></td>
<td>CO</td>
<td>Negligible</td>
<td>0.01</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>VOC</td>
<td>Negligible</td>
<td>0.03</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>THAP</td>
<td>Negligible</td>
<td>0.00017</td>
<td>NA</td>
</tr>
</tbody>
</table>

C. **Auxiliary Boiler**

<table>
<thead>
<tr>
<th>Fuel</th>
<th>Pollutant</th>
<th>PTE (lb/hr)</th>
<th>PTE (TPY)</th>
<th>Allowable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Gas</td>
<td>PM</td>
<td>0.5</td>
<td>2</td>
<td>28 lb/hr (125 tpy)25</td>
</tr>
<tr>
<td></td>
<td>NOx</td>
<td>10</td>
<td>44</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>SOx</td>
<td>0.04</td>
<td>0.18</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>CO</td>
<td>2.6</td>
<td>11.4</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>VOC</td>
<td>0.4</td>
<td>1.8</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>THAP</td>
<td>0.04</td>
<td>0.17</td>
<td>NA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Liquid Fuel (#2 Fuel Oil)</th>
<th>Pollutant</th>
<th>PTE (lb/hr)</th>
<th>PTE (TPY)</th>
<th>Allowable</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PM</td>
<td>0.9</td>
<td>4</td>
<td>28 lb/hr (125 tpy)26</td>
</tr>
<tr>
<td></td>
<td>NOx</td>
<td>11.0</td>
<td>48</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>SOx</td>
<td>30.0</td>
<td>131</td>
<td>1 lb SO₂/MMBtu – 3 hr average (320 tpy)27</td>
</tr>
<tr>
<td></td>
<td>CO</td>
<td>2.7</td>
<td>12</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>VOC</td>
<td>0.1</td>
<td>0.61</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>THAP</td>
<td>0.03</td>
<td>0.15</td>
<td>NA</td>
</tr>
</tbody>
</table>

22 17.16.340.F.
23 17.16.340.C.
24 17.16.340.F.
25 17.16.165.C
26 17.16.165.C
27 17.16.160.E.
D. Cooling Towers

<table>
<thead>
<tr>
<th>Unit</th>
<th>Pollutant</th>
<th>PTE (lb/hr)</th>
<th>PTE (TPY)</th>
<th>Allowable</th>
</tr>
</thead>
<tbody>
<tr>
<td>I1E</td>
<td>PM</td>
<td>8.35</td>
<td>36</td>
<td>108 lb/ht (474 tpy)</td>
</tr>
<tr>
<td>I2D</td>
<td>PM</td>
<td>8.35</td>
<td>36</td>
<td>108 lb/ht (474 tpy)</td>
</tr>
<tr>
<td>I3D</td>
<td>PM</td>
<td>11.6</td>
<td>51</td>
<td>114 lb/ht (497 tpy)</td>
</tr>
<tr>
<td>I4E</td>
<td>PM</td>
<td>16</td>
<td>69</td>
<td>119 lb/ht (521 tpy)</td>
</tr>
</tbody>
</table>

E. Coal Preparation Plant & Fly-Ash Handling Systems

<table>
<thead>
<tr>
<th>Unit</th>
<th>Pollutant</th>
<th>PTE (lb/hr)</th>
<th>PTE (TPY)</th>
<th>Allowable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal Preparation Plant</td>
<td>PM</td>
<td>53</td>
<td>232</td>
<td>62 lb/hr (272 tpy)</td>
</tr>
<tr>
<td>Fly-Ash Handling Systems</td>
<td>PM</td>
<td>27</td>
<td>119</td>
<td>65 lb/hr (285 tpy)</td>
</tr>
</tbody>
</table>

V. Applicable Requirements

A. Standards addressed by the permit:

1. Pima County State Implementation Plan (SIP):

 Rule 315 Roads and Streets
 Rule 318 Vacant Lots and Open Spaces
 Rule 321 Standards and Applicability
 Rule 343 Visibility Limiting Standard

2. Code of Federal Regulations Title 40:

 Part 60 Subpart KKKK Standards of Performance for Stationary Combustion Turbines (IGT3)
 Part 60 Subpart GG Standards of Performance for Stationary Gas Turbines (IGT3)
 Part 60 Appendix B Performance Specifications
 Part 64 Compliance Assurance Monitoring
 Part 75 Subpart F Conversion Procedures
 Part 75 Subpart G Determination of CO Emissions
 Part 75 Appendix A Specifications and Test Procedures
 Part 75 Appendix B Quality Assurance and Quality Control

28 PCC 17.16.430.A.1.
29 PCC 17.16.430.A.1.
30 PCC 17.16.430.A.1.
31 PCC 17.16.430.A.1.
32 PCC 17.16.310.B.2.
33 PCC 17.16.430.A.1.
3. Pima County Code (PCC) Title 17, Chapter 17.16:

17.16.020 Noncompliance with Applicable Standards
17.16.030 Odor Limiting Standards
17.16.050 Visibility Limiting Standards
17.16.060 Fugitive Dust Producing Activities
17.16.080 Vacant Lots and Open Spaces
17.16.090 Roads and Streets
17.16.100 Particulate Materials
17.16.110 Storage Piles
17.16.130 Applicability
17.16.160 Standards of Performance for Fossil-Fuel Fired Steam Generators and General Fuel Burning Equipment
17.16.165 Standards of Performance for Fossil-Fuel Fired Industrial and Commercial Equipment
17.16.310 Standards of Performance for Coal Preparation Plants
17.16.340 Standards of Performance for Stationary Rotating Machinery
17.16.430 Standards of Performance for Unclassified Sources
17.16.590 Permit Requirements for Sources Located in Attainment and Unclassifiable Areas

4. Installation Permit #1156 – October 14, 1981 by Arizona Department of Health Services

B. Standards that are applicable, but have not been addressed by the permit:

Code of Federal Regulations Title 40:

These standards have not been included in this renewal permit. In an email dated 08/16/2006 TEP-IGS stated that as an existing source it is not subject to notification requirements for NESHAP Subpart ZZZZ. After reviewing the applicability requirements PDEQ has confirmed this finding. TEP-IGS has also stated that pursuant to 40 CFR 63.6090(b)(4) – (subcategories with limited requirements), none of the present turbines are subject to the notification requirements of Subpart YYYYY. After reviewing the applicability requirements, it was not initially clear if the current turbines would fall into the subcategories outlined in the applicability of 40 CFR 63 Subpart YYYYY. Only four subcategories are described in the applicability of subpart YYYYY none of which apply to TEP-IGS. The federal register for the final rule however has 4 other subcategories and the TEP-IGS’ turbines are covered under one of them. PDEQ therefore does agree that the turbines fall into the subcategory defined under 40 CFR 63.6090(b) and pursuant to 40 CFR 63.6090(b)(4), no notification is required and TEP-IGS does not have to meet the requirements of this subpart and of subpart A.
C. Standards which are not applicable:

1. PSD/NSR

UNIT I4 (manufactured in 1964) was originally designed to fire natural gas and oil. This was permitted by Pima County till the early '80s. In 1980 the Department of Energy promulgated regulations that required certain large power plants to convert their operations to additionally have the capacity to burn coal. TEP applied for an installation permit for the coal conversion project. Although the initial plan was to convert all four fossil fuel-fired steam-generating units (II – I4), only UNIT I4 was converted. Since this change was mandated by a government order, NSR requirements are not applicable [PCC 17.16.340.A, “major modification” – c.ii & AAC R18-2-101”major modification” – c.ii].

2. Code of Federal Regulations, Title 40

c. Part 60 Subpart Y Standards of Performance for Coal Preparation Plants.

The NSPS definition for “modification” exempts mandatory coal conversion projects [40 CFR 60.14(e)(4) and CAA Sec 111(a)(8)]. Therefore, NSPS Subparts D & Da requirements are not applicable to Unit I4, nor is Subpart Y applicable to the coal preparation plant.

d. Part 60 Subpart OOO Standards of Performance for Nonmetallic Mineral Processing Plants.

Subpart OOO specifically identifies the applicable substances of which fly-ash is not a part.

D. Promulgated standards which will be or may be applicable:

a. Applicable Unit: IAUX. Applicability includes boilers under 25 MW at Major Sources of HAP (63.7485, 63.7491(c)). TEP-IGS is a major source of HAPs (PTE: ~81.8 tpy). At 73MMBtu, this unit has a capacity of 21.4 MW.

b. The promulgation date was Sept 13, 2004.

c. The initial notification date was February 12, 2005.

d. The compliance date is Sept 13, 2007.
e. TEP submitted an initial notification on December 13, 2004.

In an email dated September 08, 2006, TEP indicated that there were no other requirements to include in the draft permit.

 a. Potentially Applicable Units: IGT1, IGT2, & IGT3. Applicability includes stationary combustion turbines at major sources of HAP (63.6085).
 b. The promulgation date was March 5, 2004.
 c. The initial notification date was June 5, 2004.
 d. The compliance date is March 5, 2007.
 e. No initial notification is required for the existing turbines at TEP-Irvington.

 a. Potentially Applicable Units: IGT1A, IGT2A, IGT3A (may be introduced with IGT3). Applicability includes stationary rotating machinery >500hp at major sources of HAP (63.6585). Emergency and Limited use units are exempt (63.6590(b)).
 b. The promulgation date was June 15, 2004.
 c. The initial notification date was September 15, 2004.
 d. The compliance date is June 15, 2007.
 e. No initial notification is required for the existing turbines at TEP-Irvington.

VI. Permit Contents

A. Applicability:

2. Stationary Rotating Machinery (including Stationary Turbines) - UNITS IGT1, IGT2, IGT1A, & IGT2A of the previous permit – main PCC standard: 17.16.340.

3. Auxiliary Boiler - Unit Iiaux of the previous permit – main PCC standard: 17.16.165.

7. All Operations

B. Emission Limits/ Standards:

1. **Fossil Fuel Fired Steam Generators:**

<table>
<thead>
<tr>
<th>Citation</th>
<th>Applicable Units</th>
<th>Standard Title</th>
<th>Description</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>II.A.2.a.</td>
<td>I1, I2, & I3</td>
<td>Sulfur Dioxide Standard</td>
<td>3-hour limit for SOx emissions when firing liquid fuel.</td>
<td>Requirement taken directly from PCC 17.16.160.D.1</td>
</tr>
<tr>
<td>II.A.2.b.</td>
<td>I4</td>
<td>Sulfur Dioxide Standard</td>
<td>3-hour limit for SOx emissions regardless of fuel fired.</td>
<td>Preconstruction Requirement retained from Installation Permit #1156, Condition 5.</td>
</tr>
<tr>
<td>II.A.3.</td>
<td>I4</td>
<td>Nitrogen Oxides Standard</td>
<td>3-hour limit for NOx emissions.</td>
<td>Preconstruction Requirement retained from Installation Permit #1156, Condition 5.</td>
</tr>
<tr>
<td>II.A.4.</td>
<td>I4</td>
<td>Opacity Standard</td>
<td>Opacity limit.</td>
<td>Preconstruction Requirement retained from Installation Permit #1156, Condition 5.</td>
</tr>
<tr>
<td>II.A.5.b & c.i.</td>
<td>I1, I2, & I3; I4</td>
<td>Fuel Limitation</td>
<td>Allowable fuels.</td>
<td>17.12.190 requirement established to allow TEP-IGS to switch fuels without applying for a revision.</td>
</tr>
<tr>
<td>II.A.5.c. ii.</td>
<td>I4</td>
<td>Fuel Limitation</td>
<td>Coal sulfur content limitation.</td>
<td>Preconstruction Requirement retained from Installation Permit #1156, Condition 4.</td>
</tr>
</tbody>
</table>

2. **Stationary Rotating Machinery (including Stationary Turbines)**

<table>
<thead>
<tr>
<th>Citation</th>
<th>Applicable Units</th>
<th>Standard Title</th>
<th>Description</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>II.B.1</td>
<td>IGT1,2 & IGT1A,2A</td>
<td>Particulate Matter Standard</td>
<td>Hourly limit for PM emissions.</td>
<td>Requirement taken directly from PCC 17.16.340.C.</td>
</tr>
</tbody>
</table>
II.B.2

<table>
<thead>
<tr>
<th>Citation</th>
<th>Applicable Units</th>
<th>Standard Title</th>
<th>Description</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IGT1,2 & IGT1A,2A</td>
<td>Sulfur Dioxide Standard</td>
<td>Hourly limit for SOx emissions when firing liquid fuels.</td>
<td>Requirement taken directly from PCC 17.16.340.F.</td>
</tr>
</tbody>
</table>

II.B.3

<table>
<thead>
<tr>
<th>Citation</th>
<th>Applicable Units</th>
<th>Standard Title</th>
<th>Description</th>
<th>Discussion</th>
</tr>
</thead>
</table>

II.B.4.a

<table>
<thead>
<tr>
<th>Citation</th>
<th>Applicable Units</th>
<th>Standard Title</th>
<th>Description</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IGT1,2 & IGT1A,2A</td>
<td>Fuel Limitation</td>
<td>Low sulfur fuel requirement.</td>
<td>Requirement taken directly from PCC 17.16.340.H.</td>
</tr>
</tbody>
</table>

II.B.4.b

<table>
<thead>
<tr>
<th>Citation</th>
<th>Applicable Units</th>
<th>Standard Title</th>
<th>Description</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IGT1 & 2</td>
<td>Fuel Limitation</td>
<td>Allowable fuels.</td>
<td>PCC 17.12.190 requirement established to allow TEP-IGS to switch fuels without applying for a revision.</td>
</tr>
</tbody>
</table>

II.B.4.c

<table>
<thead>
<tr>
<th>Citation</th>
<th>Applicable Units</th>
<th>Standard Title</th>
<th>Description</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IGT1A,2A</td>
<td>Fuel Limitation</td>
<td>Diesel fuel requirement.</td>
<td>PCC 17.12.190 requirement established to avoid potential issues with fuel switching.</td>
</tr>
</tbody>
</table>

3. Auxiliary Boiler

II.C.1

<table>
<thead>
<tr>
<th>Citation</th>
<th>Applicable Units</th>
<th>Standard Title</th>
<th>Description</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IAUX</td>
<td>Particulate Matter Standard</td>
<td>Hourly limit for PM emissions.</td>
<td>Requirement taken directly from PCC 17.16.165.C.</td>
</tr>
</tbody>
</table>

II.C.2

<table>
<thead>
<tr>
<th>Citation</th>
<th>Applicable Units</th>
<th>Standard Title</th>
<th>Description</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IAUX</td>
<td>Sulfur Dioxide Standard</td>
<td>Hourly limit for SOx emissions when firing liquid fuel.</td>
<td>Requirement taken directly from PCC 17.16.165.E.</td>
</tr>
</tbody>
</table>

II.C.3.a

<table>
<thead>
<tr>
<th>Citation</th>
<th>Applicable Units</th>
<th>Standard Title</th>
<th>Description</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IAUX</td>
<td>Fuel Limitations</td>
<td>Low sulfur fuel requirement.</td>
<td>Requirement taken directly from PCC 17.16.165.G.</td>
</tr>
</tbody>
</table>

II.C.3.b

<table>
<thead>
<tr>
<th>Citation</th>
<th>Applicable Units</th>
<th>Standard Title</th>
<th>Description</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IAUX</td>
<td>Fuel Limitations</td>
<td>Allowable fuels.</td>
<td>PCC 17.12.190 requirement established to avoid potential issues with fuel switching.</td>
</tr>
</tbody>
</table>

4. Cooling Towers

II.D.1

<table>
<thead>
<tr>
<th>Citation</th>
<th>Applicable Units</th>
<th>Standard Title</th>
<th>Description</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I1E, I2D, I3D, & I4E</td>
<td>Particulate Matter Standard</td>
<td>Hourly limit for PM emissions.</td>
<td>Requirement taken directly from PCC 17.16.430.A.1.b</td>
</tr>
</tbody>
</table>

II.D.2

<table>
<thead>
<tr>
<th>Citation</th>
<th>Applicable Units</th>
<th>Standard Title</th>
<th>Description</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I1E, I2D, I3D, & I4E</td>
<td>Odor Limiting Standard</td>
<td>Prohibition from emitting gasses and odor as to cause air pollution.</td>
<td>Requirement taken directly from PCC 17.16.430.D.</td>
</tr>
</tbody>
</table>

II.D.3

<table>
<thead>
<tr>
<th>Citation</th>
<th>Applicable Units</th>
<th>Standard Title</th>
<th>Description</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I1E, I2D, I3D, & I4E</td>
<td>Property Line</td>
<td>Prohibition of discharging pollutants to</td>
<td>Requirement taken directly from PCC 17.16.430.G.</td>
</tr>
<tr>
<td>Citation</td>
<td>Applicable Units</td>
<td>Standard Title</td>
<td>Description</td>
<td>Discussion</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------</td>
<td>----------------</td>
<td>-------------</td>
<td>------------</td>
</tr>
</tbody>
</table>

5. **Coal Preparation Plant**

<table>
<thead>
<tr>
<th>Citation</th>
<th>Applicable Units</th>
<th>Standard Title</th>
<th>Description</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.E.1.</td>
<td>CPP and associated equip</td>
<td>Particulate Matter Standards</td>
<td>Hourly limits for PM emissions.</td>
<td>Requirements taken directly from PCC 17.16.310.B</td>
</tr>
<tr>
<td>I.E.2</td>
<td>CPP and associated equip</td>
<td>Material Handling Standard</td>
<td>Handling requirements.</td>
<td>Requirements taken directly from PCC 17.16.100.A & 17.16.310.E.</td>
</tr>
<tr>
<td>I.E.4</td>
<td>CPP and associated equip</td>
<td>Storage Pile Standards</td>
<td>Storage pile requirements.</td>
<td>Requirements taken directly from PCC 17.16.110.B & 17.16.310.E.</td>
</tr>
<tr>
<td>I.E.5</td>
<td>CPP and associated equip</td>
<td>Control Measures Standards</td>
<td>Control measure requirements.</td>
<td>Requirements taken directly from PCC 17.16.100, 17.16.110.A, & 17.16.110.B</td>
</tr>
</tbody>
</table>

6. **Fly-Ash Handling Systems**

<table>
<thead>
<tr>
<th>Citation</th>
<th>Applicable Units</th>
<th>Standard Title</th>
<th>Description</th>
<th>Discussion</th>
</tr>
</thead>
</table>

7. **Open Areas, Roadways, & Streets**

<table>
<thead>
<tr>
<th>Citation</th>
<th>Applicable Units</th>
<th>Standard Title</th>
<th>Description</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.G.1</td>
<td>Various</td>
<td>Construction Limitation Standard</td>
<td>Control measure requirements.</td>
<td>Requirements taken directly from PCC 17.16.080.A & SIP 318.A.</td>
</tr>
<tr>
<td>I.G.2</td>
<td>Various</td>
<td>Cleared land</td>
<td>Dust suppression</td>
<td>Requirement taken directly from</td>
</tr>
<tr>
<td>Citation</td>
<td>Applicable Units</td>
<td>Standard Title</td>
<td>Description</td>
<td>Discussion</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------</td>
<td>----------------</td>
<td>-------------</td>
<td>------------</td>
</tr>
</tbody>
</table>

8. All Operations

<table>
<thead>
<tr>
<th>Citation</th>
<th>Applicable Units</th>
<th>Standard Title</th>
<th>Description</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>II.H.1</td>
<td>All units & processes</td>
<td>Opacity Standards</td>
<td>Opacity limitations.</td>
<td>Requirements taken directly from PCC 17.16.050.B & 17.16.130.B.3.</td>
</tr>
<tr>
<td>II.H.3</td>
<td>All units & processes</td>
<td>Odor Limiting Standard</td>
<td>Odor limiting requirement.</td>
<td>Requirement taken directly from PCC 17.16.030.</td>
</tr>
</tbody>
</table>

C. Air Pollution Controls:

<table>
<thead>
<tr>
<th>Citation</th>
<th>Applicable Units</th>
<th>Standard Title</th>
<th>Description</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>III.A</td>
<td>I4</td>
<td>Air Pollution Control Standard</td>
<td>Baghouse requirement when firing coal (PM).</td>
<td>Preconstruction Requirement retained from Installation Permit #1156, Condition 8.</td>
</tr>
<tr>
<td>III.B.1</td>
<td>Coal Prep Plant</td>
<td>Air Pollution Control Standard</td>
<td>Use of spray bars and other equipment to prevent fugitive dust</td>
<td>Preconstruction Requirement retained from Installation Permit #1156, Condition 7.</td>
</tr>
<tr>
<td>III.B.2</td>
<td>Coal Prep Plant</td>
<td>Air Pollution Control Standards</td>
<td>Minimize emissions when equipment listed is operated</td>
<td>Control Officer requirements for good modern practices to operate and maintain air pollution control equip.</td>
</tr>
<tr>
<td>III.C.1</td>
<td>Fly-Ash Handling Systems</td>
<td>Air Pollution Control Standards</td>
<td>Use of spray bars and other equipment to prevent fugitive dust</td>
<td>Preconstruction Requirement retained from Installation Permit #1156, Condition 7.</td>
</tr>
</tbody>
</table>
D. Monitoring Requirements[^34]:

1. **Fossil Fuel Fired Steam Generators**

<table>
<thead>
<tr>
<th>Citation</th>
<th>Applicable Units</th>
<th>Standard Title</th>
<th>Description</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV.A1.a</td>
<td>I1, I2, & I3</td>
<td>Opacity Monitoring Standard</td>
<td>Weekly opacity monitoring schedule when firing liquid fuel.</td>
<td>PCC 17.12.180 based requirement to demonstrate compliance with II.H.1 as it pertains to Units I1, I2, & I3.</td>
</tr>
<tr>
<td>IV.A.1.b</td>
<td>I4</td>
<td>Opacity Monitoring Standard</td>
<td>Continuous Opacity Monitoring System requirements.</td>
<td>Preconstruction Requirement retained from Installation Permit #1156, Condition 6. Other pertinent standards include: 17.12.060 & 40 CFR 60 – Appendix B.</td>
</tr>
<tr>
<td>IV.A.2</td>
<td>I4</td>
<td>Compliance Assurance Monitoring</td>
<td>CAM Requirements.</td>
<td>These standards were proposed by TEP-IGS, verified by PDEQ against the requirements of 40 CFR 64.3(d) and 64.6. EPA had additional input on baghouse inspection requirements for CAM and PDEQ modified the CAM based on Appendix B Illustration No. 1a of the CAM Illustrations guidance document January 2005 Revision 1.</td>
</tr>
<tr>
<td>IV.A.3</td>
<td>I4</td>
<td>SOx, NOx Monitoring Standards</td>
<td>CEMS requirements for NOx &</td>
<td>Preconstruction Requirement retained from Installation Permit #1156, Condition 6.</td>
</tr>
</tbody>
</table>

[^34]: For ADEQ discussion on Periodic Monitoring see Appendix A.
SOx.

<table>
<thead>
<tr>
<th>Citation</th>
<th>Applicable Units</th>
<th>Standard Title</th>
<th>Description</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV.A.4</td>
<td>I4</td>
<td>Coal Monitoring Standard</td>
<td>Coal sampling required for each train load received.</td>
<td>Preconstruction Requirement retained from Installation Permit #1156, Condition 3.</td>
</tr>
</tbody>
</table>

2. Stationary Rotating Machinery (Including Stationary Turbines)

<table>
<thead>
<tr>
<th>Citation</th>
<th>Applicable Units</th>
<th>Standard Title</th>
<th>Description</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV.B.1</td>
<td>IGT1,2 & IGT1A,2A</td>
<td>Opacity Monitoring Standard</td>
<td>Weekly opacity monitoring schedule when firing liquid fuel.</td>
<td>PCC 17.12.180 based requirement to demonstrate compliance with II.B.3 & II.H.1.</td>
</tr>
<tr>
<td>IV.B.2</td>
<td>IGT1,2,&3</td>
<td>Fuel Sulfur Monitoring Standard</td>
<td>Sulfur content monitoring of liquid fuels.</td>
<td>Adapted from PCC 17.16.340.I.</td>
</tr>
<tr>
<td>IV.B.3</td>
<td>IGT1&2</td>
<td>Hours of Operation Monitoring Standard</td>
<td>Monthly monitoring of hours of operation.</td>
<td>Adopted in conjunction with testing requirements in VII.A.1.</td>
</tr>
</tbody>
</table>

3. Coal Preparation Plant

<table>
<thead>
<tr>
<th>Citation</th>
<th>Applicable Units</th>
<th>Standard Title</th>
<th>Description</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV.C.1</td>
<td>CPP</td>
<td>Opacity Monitoring Standard</td>
<td>Weekly opacity monitoring schedule.</td>
<td>Monitoring to demonstrate compliance with II.G.1 as it pertains to the CPP.</td>
</tr>
<tr>
<td>IV.C.2</td>
<td>CPP</td>
<td>Opacity Monitoring Standard</td>
<td>Method 9 required when excess emissions suspected.</td>
<td>Monitoring to demonstrate compliance with II.G.1 as it pertains to the CPP.</td>
</tr>
<tr>
<td>IV.C.3</td>
<td>CPP</td>
<td>Opacity Monitoring Standard</td>
<td>Required action subsequent to performing Method 9.</td>
<td>Monitoring to demonstrate compliance with II.G.1 as it pertains to the CPP.</td>
</tr>
<tr>
<td>IV.C.4</td>
<td>CPP</td>
<td>Opacity Monitoring Standard</td>
<td>Required action subsequent to performing Method 9.</td>
<td>Monitoring to demonstrate compliance with II.G.1 as it pertains to the CPP.</td>
</tr>
</tbody>
</table>
4. Fly-Ash Handling Systems

<table>
<thead>
<tr>
<th>Citation</th>
<th>Applicable Units</th>
<th>Standard Title</th>
<th>Description</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV.D.1</td>
<td>FAHS</td>
<td>Opacity Monitoring Standard</td>
<td>Weekly opacity monitoring schedule.</td>
<td>Monitoring to demonstrate compliance with II.G.1 as it pertains to the FAHS.</td>
</tr>
<tr>
<td>IV.D.2</td>
<td>FAHS</td>
<td>Opacity Monitoring Standard</td>
<td>Method 9 required when excess emissions suspected.</td>
<td>Monitoring to demonstrate compliance with II.G.1 as it pertains to the FAHS.</td>
</tr>
<tr>
<td>IV.D.3</td>
<td>FAHS</td>
<td>Opacity Monitoring Standard</td>
<td>Required action subsequent to performing Method 9.</td>
<td>Monitoring to demonstrate compliance with II.G.1 as it pertains to the FAHS.</td>
</tr>
<tr>
<td>IV.D.4</td>
<td>FAHS</td>
<td>Opacity Monitoring Standard</td>
<td>Required action subsequent to performing Method 9.</td>
<td>Monitoring to demonstrate compliance with II.G.1 as it pertains to the FAHS.</td>
</tr>
</tbody>
</table>

E. Recordkeeping Requirements:

1. Fossil Fuel Fired Steam Generators

<table>
<thead>
<tr>
<th>Citation</th>
<th>Applicable Units</th>
<th>Standard Title</th>
<th>Description</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>V.A.1</td>
<td>I1, I2, & I3</td>
<td>PM Recordkeeping Standard</td>
<td>Requirement to keep records of liquid fuel specs.</td>
<td>Recordkeeping to demonstrate compliance with II.A.1.</td>
</tr>
<tr>
<td>V.A.2</td>
<td>I1, I2, & I3</td>
<td>SOx Recordkeeping Standard</td>
<td>Requirement to records of liquid fuel specs.</td>
<td>Recordkeeping to demonstrate compliance with II.A.2.a. & II.A.5.a.</td>
</tr>
<tr>
<td>V.A.3</td>
<td>I1, I2, I3 & I4</td>
<td>Fuel Recordkeeping Standard</td>
<td>Requirement to record fuel switching.</td>
<td>Recordkeeping to demonstrate compliance with II.A.5.</td>
</tr>
<tr>
<td>V.A.4</td>
<td>I1, I2, & I3</td>
<td>Hours of Operation Recordkeeping Standard</td>
<td>Requirement to record hours of operation and hours during which liquid fuel is fired.</td>
<td>Recordkeeping to demonstrate testing requirements per VII.A.1.</td>
</tr>
</tbody>
</table>

2. Stationary Rotating Machinery (Including Stationary Turbines)

<table>
<thead>
<tr>
<th>Citation</th>
<th>Applicable Units</th>
<th>Standard Title</th>
<th>Description</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>V.B.1</td>
<td>IGT1,2, & IGT1A,2A</td>
<td>PM Recordkeeping Standard</td>
<td>Requirement to keep records of liquid fuel specs.</td>
<td>Recordkeeping to demonstrate compliance with II.B.1.</td>
</tr>
<tr>
<td>V.B.2</td>
<td>IGT1,2, & IGT1A,2A</td>
<td>SOx Recordkeeping Standard</td>
<td>Requirement to keep records of liquid fuel specs.</td>
<td>Recordkeeping to demonstrate compliance with II.B.2.</td>
</tr>
</tbody>
</table>
3. Auxiliary Boiler

<table>
<thead>
<tr>
<th>Citation</th>
<th>Applicable Units</th>
<th>Standard Title</th>
<th>Description</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>V.C</td>
<td>IAUX</td>
<td>Fuel Recordkeeping Standard</td>
<td>Requirement to keep records of changes to fuels fired.</td>
<td>Recordkeeping to demonstrate compliance with II.C.3.</td>
</tr>
</tbody>
</table>

4. Coal Preparation Plant

<table>
<thead>
<tr>
<th>Citation</th>
<th>Applicable Units</th>
<th>Standard Title</th>
<th>Description</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>V.D.2</td>
<td>CPP</td>
<td>Maintenance Recordkeeping Standard</td>
<td>Requirement to record maintenance actions performed on air pollution control equipment.</td>
<td>Recordkeeping to demonstrate compliance with III.B.</td>
</tr>
</tbody>
</table>

5. Fly-Ash Handling Systems

<table>
<thead>
<tr>
<th>Citation</th>
<th>Applicable Units</th>
<th>Standard Title</th>
<th>Description</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>V.E.1</td>
<td>FAHS</td>
<td>Best Modern Practices Recordkeeping Standard</td>
<td>Requirement to record best management specifications on-site.</td>
<td>Recordkeeping to demonstrate compliance with II.F.2, 3, 4, & 5.</td>
</tr>
<tr>
<td>V.E.2</td>
<td>FAHS</td>
<td>Maintenance Recordkeeping Standard</td>
<td>Requirement to record maintenance actions performed on air pollution control equipment.</td>
<td>Recordkeeping to demonstrate compliance with III.C.</td>
</tr>
</tbody>
</table>

6. Open Areas, Roadways, & Streets

<table>
<thead>
<tr>
<th>Citation</th>
<th>Applicable Units</th>
<th>Standard Title</th>
<th>Description</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>V.F</td>
<td>Various</td>
<td>Control Measure Recordkeeping Standard</td>
<td>Requirement to keep records of control measures adopted.</td>
<td>Recordkeeping to demonstrate compliance with II.G.1, 2 & 4.</td>
</tr>
</tbody>
</table>
F. Reporting Requirements:

1. Fossil Fuel Fired Steam Generators

<table>
<thead>
<tr>
<th>Citation</th>
<th>Applicable Units</th>
<th>Standard Title</th>
<th>Description</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>VI.A.1</td>
<td>I4</td>
<td>CAM Reporting Standard</td>
<td>Reporting required in conjunction with Compliance Assurance Monitoring.</td>
<td>Requirement taken from 40 CFR 64.7(d).</td>
</tr>
<tr>
<td>VI.A.2</td>
<td>I4</td>
<td>Fuel Reporting Standard</td>
<td>Requirement to report results of coal analyses.</td>
<td>Preconstruction Requirement retained from Installation Permit #1156, Condition 3.</td>
</tr>
</tbody>
</table>

2. Stationary Gas Turbines (Including Stationary Turbines)

<table>
<thead>
<tr>
<th>Citation</th>
<th>Applicable Units</th>
<th>Standard Title</th>
<th>Description</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>VI.B</td>
<td>IGT1,2 & IGT1A,2A</td>
<td>Fuel Reporting Standard</td>
<td>Reporting when sulfur content of fuels fired exceeds 0.8%.</td>
<td>Requirement taken directly from 17.16.340.J.</td>
</tr>
</tbody>
</table>

3. Auxiliary Boiler

<table>
<thead>
<tr>
<th>Citation</th>
<th>Applicable Units</th>
<th>Standard Title</th>
<th>Description</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>VI.C</td>
<td>IAUX</td>
<td>Opacity Reporting Standard</td>
<td>Requirement to report 6-minute periods where visible emissions exceed 15% opacity.</td>
<td>Requirement taken directly from PCC 17.16.165.J.</td>
</tr>
</tbody>
</table>

4. All Operations

<table>
<thead>
<tr>
<th>Citation</th>
<th>Applicable Units</th>
<th>Standard Title</th>
<th>Description</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citation</td>
<td>Applicable Units</td>
<td>Standard Title</td>
<td>Description</td>
<td>Discussion</td>
</tr>
<tr>
<td>----------</td>
<td>------------------</td>
<td>--------------------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>VI.H</td>
<td>All units & processes</td>
<td>Emissions Inventory Reporting</td>
<td>Requirement for annual emissions inventory.</td>
<td>Requirement taken from PCC 17.12.320.</td>
</tr>
</tbody>
</table>

G. Testing Requirements\(^{35}\):

1. Fossil Fuel Fired Steam Generators

<table>
<thead>
<tr>
<th>Citation</th>
<th>Applicable Units</th>
<th>Standard Title</th>
<th>Description</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>VII.A.1</td>
<td>I1, I2, & I3</td>
<td>SOx Testing Standard</td>
<td>Requirement to conduct performance test on units that fire liquid fuel greater than 1300 hours per 12-month period.</td>
<td>Requirement carried over from previous permit to determine compliance with II.A.2.a which used 40 CFR 72.2 as a GUIDELINE. It requires units that fire liquid fuel as their primary fuel to conduct an annual performance test. These units are NOT subject to 40 CFR 72. The 1300-hour limitation comes from 72.2’s definition that firing liquid fuel 15% of the time shall be considered firing liquid fuel as the primary fuel. 1300 is ~15% of 8760. The bases for this requirement are PCC 17.12.180.A.3.a & 17.12.050.</td>
</tr>
<tr>
<td>VII.A.2</td>
<td>I4</td>
<td>Criteria Emissions Testing Standard</td>
<td>Requirement for annual performance test for Opacity, PM, SOx, and NOx when firing coal.</td>
<td>Requirement carried over from previous permit to determine compliance with II.A.1, II.A.2.b, II.A.3, & II.A.4.</td>
</tr>
</tbody>
</table>

\(^{35}\) For ADEQ discussion on Testing Requirements see Appendix A.
2. Stationary Rotating Machinery (Including Stationary Turbines)

<table>
<thead>
<tr>
<th>Citation</th>
<th>Applicable Units</th>
<th>Standard Title</th>
<th>Description</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>VII.B.1</td>
<td>IGT1&2</td>
<td>SOx Testing Standard</td>
<td>Requirement to conduct performance test on units that fire liquid fuel greater than 1300 hours per 12-month period.</td>
<td>Requirement carried over from previous permit to determine compliance with II.B.2 which used 40 CFR 72.2 as a GUIDELINE. It requires units that fire liquid fuel as their primary fuel to conduct an annual performance test. These units are NOT subject to 40 CFR 72. The 1300 hour limitation comes from 72.2’s definition that firing liquid fuel 15% of the time shall be considered firing liquid fuel as the primary fuel. 1300 is ~15% of 8760. The bases for this requirement are PCC 17.12.180.A.3.a & 17.12.010.</td>
</tr>
<tr>
<td>VII.B.2</td>
<td>IGT1&2</td>
<td>CO Testing Standard</td>
<td>Requirement to conduct performance test on units that exceed 4500 hours in a 12-month period.</td>
<td>Requirement carried over from previous permit. The basis for this requirement is ARS 49-422.</td>
</tr>
</tbody>
</table>

3. All Operations

<table>
<thead>
<tr>
<th>Citation</th>
<th>Applicable Units</th>
<th>Standard Title</th>
<th>Description</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>VII.C</td>
<td>All units & processes</td>
<td>General Testing Standard</td>
<td>Requirement to contact control officer for applicable test methods when testing is required or requested.</td>
<td>Standard PDEQ requirement.</td>
</tr>
</tbody>
</table>
H. Acid Rain Permit

<table>
<thead>
<tr>
<th>Citation</th>
<th>Applicable Units</th>
<th>Standard Title</th>
<th>Description</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>II.A</td>
<td>I1</td>
<td>SOx & NOx Emission Standards</td>
<td>Annual limitations of respective pollutants.</td>
<td>Limitations taken directly from 40 CFR Part 73 Table 2.</td>
</tr>
<tr>
<td>II.B</td>
<td>I2</td>
<td>SOx & NOx Emission Standards</td>
<td>Annual limitations of respective pollutants.</td>
<td>Limitations taken directly from 40 CFR Part 73 Table 2.</td>
</tr>
<tr>
<td>II.C</td>
<td>I3</td>
<td>SOx & NOx Emission Standards</td>
<td>Annual limitations of respective pollutants.</td>
<td>Limitations taken directly from 40 CFR Part 73 Table 2.</td>
</tr>
<tr>
<td>II.D</td>
<td>I4</td>
<td>SOx & NOx Emission Standards</td>
<td>Annual limitations of respective pollutants.</td>
<td>Limitations taken directly from 40 CFR Part 73 Table 2.</td>
</tr>
</tbody>
</table>

I. Alternate Operating Scenario #1

<table>
<thead>
<tr>
<th>Citation</th>
<th>Applicable Units</th>
<th>Standard Title</th>
<th>Description</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td>IGT3</td>
<td>Notification & Recordkeeping</td>
<td>Notification Requirements upon installation, startup and performance testing of unit IGT3.</td>
<td>Various general applicable requirements taken directly from 40 CFR 60 Subpart A and 40 CFR 60 subpart KKKK, includes notification and recordkeeping requirements for TEP-IGS to notify PDEQ concerning IGT3.</td>
</tr>
<tr>
<td>III.A</td>
<td>IGT3</td>
<td>Operational Limitation</td>
<td>Limited to use of natural gas.</td>
<td>Use of any other fuels might cause IGT3 to trigger other applicable requirements.</td>
</tr>
<tr>
<td>III.B.1.a</td>
<td>IGT3</td>
<td>Nitrogen Dioxide Standard</td>
<td>NOx concentration based on 4-hour rolling average.</td>
<td>Limitations taken directly from 40 CFR 60.4320, Table 1, 60.4325 and 60.4380.b.1.</td>
</tr>
<tr>
<td>III.B.1.b</td>
<td>IGT3</td>
<td>Nitrogen Dioxide Limitation</td>
<td>Annual TPY limitation on NOx.</td>
<td>Limitation of 40 TPY to prevent triggering a significant modification under attainment NSR.</td>
</tr>
<tr>
<td>III.B.2</td>
<td>IGT3</td>
<td>Air Pollution Control Equipment</td>
<td>Minimizing NOx emissions at all times</td>
<td>Requirements taken directly from 40 CFR 60.4333.a</td>
</tr>
<tr>
<td>III.B.3.a</td>
<td>IGT3</td>
<td>Monitoring and recordkeeping</td>
<td>Installation and certification of each NOx diluent CEMS.</td>
<td>Requirements taken directly from 40 CFR 60.4345.a</td>
</tr>
<tr>
<td>III.B.3.b</td>
<td>IGT3</td>
<td>Monitoring and recordkeeping</td>
<td>Demonstrate compliance with NOx concentration limitation.</td>
<td>Requirements taken directly from 40 CFR 60.4335</td>
</tr>
<tr>
<td>Citation</td>
<td>Applicable Units</td>
<td>Standard Title</td>
<td>Description</td>
<td>Discussion</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------</td>
<td>----------------</td>
<td>-------------</td>
<td>------------</td>
</tr>
<tr>
<td>III.B.3.c</td>
<td>IGT3</td>
<td>Monitoring and recordkeeping</td>
<td>Flow meter installation.</td>
<td>Requirements taken directly from 40 CFR 60.4345</td>
</tr>
<tr>
<td>III.B.3.d</td>
<td>IGT3</td>
<td>NOx limit monitoring</td>
<td>Demonstrate compliance with the 40 TPY annual limit</td>
<td>Authority from PCC 17.12.180.A.3, A.4 & A.5 for TEP-IGS to use CEMS to demonstrate emissions from unit are under 40 TPY and thus not trigger a significant modification under PSD.</td>
</tr>
<tr>
<td>III.B.4</td>
<td>IGT3</td>
<td>Performance Testing</td>
<td></td>
<td>Requirements taken directly from 40 CFR 60.4405, 60.4400.a</td>
</tr>
<tr>
<td>III.C.1.a</td>
<td>IGT3</td>
<td>Sulfur Dioxide Standard</td>
<td>Fuel sulfur content limit.</td>
<td>Limitations taken directly from 40 CFR 60.4365 and use of PCC 17.12.190.B.</td>
</tr>
<tr>
<td>III.C.1.b</td>
<td>IGT3</td>
<td>Sulfur Dioxide Standard</td>
<td>Annual TPY limitation on SO$_2$.</td>
<td>Limitation of 40 TPY to prevent triggering a significant modification under attainment NSR.</td>
</tr>
<tr>
<td>III.C.2.a</td>
<td>IGT3</td>
<td>Monitoring and recordkeeping</td>
<td>Demonstrate compliance with sulfur content limit</td>
<td>Exemption from monitoring total sulfur content of fuel if TEP-IGS keeps current records of valid purchase contract, tariff sheet or transportation contract for the fuel showing required information.</td>
</tr>
<tr>
<td>III.C.2.b</td>
<td>IGT3</td>
<td>Monitoring and recordkeeping</td>
<td>Demonstrate compliance with the 40 TPY annual limit</td>
<td>Authority from PCC 17.12.180.A.3, A.4 & A.5 for TEP-IGS to use CEMS to demonstrate emissions from unit are under 40 TPY and thus do not trigger a significant modification under attainment NSR.</td>
</tr>
<tr>
<td>III.D.1</td>
<td>IGT3</td>
<td>Carbon Monoxide Standard</td>
<td>Annual TPY limitation on CO.</td>
<td>Limitation of 100 TPY to prevent triggering a significant modification under attainment NSR.</td>
</tr>
<tr>
<td>III.D.2</td>
<td>IGT3</td>
<td>Monitoring and recordkeeping</td>
<td>Installation and certification of CEMS for CO emissions and diluent from IGT3.</td>
<td>Requirements taken directly from 40 CFR 60.4345.c and use of PCC 17.12.180.A.3, A.4 & A.5 to require TEP-IGS to use CEMS to demonstrate emissions from unit are under 100 TPY and thus do not trigger a significant modification under PSD.</td>
</tr>
</tbody>
</table>
J. Alternate Operating Scenario #2

<table>
<thead>
<tr>
<th>Citation</th>
<th>Applicable Units</th>
<th>Standard Title</th>
<th>Description</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>II IGT3</td>
<td>Notification & Recordkeeping</td>
<td>Notification Requirements upon installation, startup and performance testing of unit IGT3.</td>
<td>Various general applicable requirements taken directly from 40 CFR 60 Subpart A and 40 CFR 60 Subpart GG, includes notification and recordkeeping requirements for TEP-IGS to notify PDEQ concerning IGT3.</td>
<td>Use of any other fuels might cause IGT3 to trigger other applicable requirements.</td>
</tr>
<tr>
<td>III.A IGT3</td>
<td>Operational Limitation</td>
<td>Limited to use of natural gas.</td>
<td>Limitations taken directly from 40 CFR 60.332.a.</td>
<td></td>
</tr>
<tr>
<td>III.B.1.a IGT3</td>
<td>Nitrogen Dioxide Standard</td>
<td>NOx concentration emission limit.</td>
<td>Limitation of 40 TPY to prevent triggering a significant modification under PSD.</td>
<td></td>
</tr>
<tr>
<td>III.B.1.b IGT3</td>
<td>Nitrogen Dioxide Limitation</td>
<td>Annual TPY limitation on NOx.</td>
<td>Requirements taken directly from 40 CFR 60.11.d.</td>
<td></td>
</tr>
<tr>
<td>III.B.2 IGT3</td>
<td>Air Pollution Control Equipment</td>
<td>Minimizing NOx emissions at all times</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Citation</td>
<td>Applicable Units</td>
<td>Standard Title</td>
<td>Description</td>
<td>Discussion</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------</td>
<td>----------------</td>
<td>-------------</td>
<td>------------</td>
</tr>
<tr>
<td>III.B.3.a</td>
<td>IGT3</td>
<td>Monitoring and recordkeeping</td>
<td>Installation and certification of each NOx diluent CEMS.</td>
<td>Proposed requirement by TEP-IGS to install, certify, maintain and operate CEMS. Authority from 17.12.180.A.2 proposed by TEP-IGS on 10/31/06.</td>
</tr>
<tr>
<td>III.B.3.b</td>
<td>IGT3</td>
<td>Monitoring and recordkeeping</td>
<td>Flow meter installation.</td>
<td>Proposed requirement by TEP-IGS to install, certify, maintain and operate fuel flow rate monitoring system. Authority from 17.12.180.A.2 proposed by TEP-IGS on 10/31/06.</td>
</tr>
<tr>
<td>III.B.3.c</td>
<td>IGT3</td>
<td>Monitoring and recordkeeping</td>
<td>Demonstrate compliance with NOx concentration limitation.</td>
<td>Requirements taken directly from 40 CFR 60.334</td>
</tr>
<tr>
<td>III.B.3.d</td>
<td>IGT3</td>
<td>NOx limit monitoring</td>
<td>Demonstrate compliance with the 40 TPY annual limit</td>
<td>Authority from PCC 17.12.180.A.3, A.4 & A.5 for TEP-IGS to use CEMS to demonstrate emissions from unit are under 40 TPY and thus not trigger a significant modification under PSD.</td>
</tr>
<tr>
<td>III.B.4</td>
<td>IGT3</td>
<td>Performance Testing</td>
<td></td>
<td>Requirements taken directly from 40 CFR 60.4405, 60.4400.a</td>
</tr>
<tr>
<td>III.C.1.a</td>
<td>IGT3</td>
<td>Sulfur Dioxide Standard</td>
<td>Fuel sulfur content limit.</td>
<td>Limitations taken directly from 40 CFR 60.333.b and use of PCC 17.12.190.B.</td>
</tr>
<tr>
<td>III.C.1.b</td>
<td>IGT3</td>
<td>Sulfur Dioxide Standard</td>
<td>Annual TPY limitation on SO₂</td>
<td>Limitation of 40 TPY to prevent triggering a significant modification under PSD.</td>
</tr>
<tr>
<td>III.C.2.a</td>
<td>IGT3</td>
<td>Monitoring and recordkeeping</td>
<td>Demonstrate compliance with sulfur content limit</td>
<td>Exemption from monitoring total sulfur content of fuel if TEP-IGS keeps current records of valid purchase contract, tariff sheet or transportation contract for the fuel showing required information.</td>
</tr>
<tr>
<td>III.C.2.b</td>
<td>IGT3</td>
<td>Monitoring and recordkeeping</td>
<td>Demonstrate compliance with the 40 TPY annual limit</td>
<td>Authority from PCC 17.12.180.A.3, A.4 & A.5 for TEP-IGS to use CEMS to demonstrate emissions from unit are under 40 TPY and thus do not trigger a significant modification under PSD.</td>
</tr>
<tr>
<td>III.D.1</td>
<td>IGT3</td>
<td>Carbon Monoxide Standard</td>
<td>Annual TPY limitation on CO.</td>
<td>Limitation of 100 TPY to prevent triggering a significant modification under PSD.</td>
</tr>
</tbody>
</table>
III.D.2 IGT3
Monitoring and recordkeeping

Description
Installation and certification of CEMS for CO emissions and diluent from IGT3.

Discussion
Proposed requirement by TEP-IGS to install, certify, maintain and operate CEMS. Authority from 17.12.180.A.2 proposed by TEP-IGS on 10/31/06. Use of PCC 17.12.180.A.3, A.4 & A.5 to require TEP-IGS to use CEMS to demonstrate emissions from unit are under 100 TPY and thus do not trigger a significant modification under PSD.

III.E.1 IGT3
CEMS

Description
Installation of CEMS

Discussion
Requirements specifying how CEMS and DAHS should be installed, calibrated maintained and operated. Pursuant to 40 CFR 60.334 Procedure 1 in appendix F to this part is not required.

III.E.2 IGT3
Monitoring recordkeeping and reporting.

Description
Annual requirements for NOx, SO2 and CO

Discussion
Authority from PCC 17.12.180.A.3, A.4 & A.5 for TEP-IGS to follow specific procedures in demonstrating compliance with the annual limits of NOx, SO2 and CO.

VII. Previous Permit Conditions

The following standards were removed from the permit [citations refer to the previous permit (See Previous Permit – Appendix D)]:

A. Standards pertaining to the IGT3 NOx limitation that have been made unnecessary by the requirement to install and operate CEMS: I.C.7, III.C.2.c, d, e, f, g, h, i, j, k, l, m, & n. IV.D.9.c, and IV.E.1 & 2.

B. Standards which are not based in an applicable rule: I.D.1.

C. Standards which pertain to insignificant activities: I.I, I.L, & I.M, III.J, and III.K.

D. Standards which pertain to equipment removed from TEP-IGS: I.N, and III.L.

E. Standards which have been made unnecessary by CAM requirements: III.B.2.a.

F. Standards which reference/are based upon nonexistent permit requirements: III.D.3.

G. Requirements for IGT3 have been removed from the main permit and replaced by the Alternate Operating Scenario in Attachment G.
H. Testing for NOx on I3, CO on I1, I2 and I3 has been completed. Conditions removed were; IV.A.2 and 3. Testing for NOx and CO on IGT1 and IGT2 has been completed. Conditions removed were; IV.C. The justification is that once the initial testing was completed there was no underlying regulation to continue requiring testing for the pollutants. There is also no need to test because the current equipment is not limited to any type of emission rates for the above pollutants. TEP-IGS is a grandfathered source and unless NSR is triggered through a significant modification or other requirements specify some form of regular testing, PDEQ deems it unnecessary to require TEP-IGS to test for NOx or CO.
I. General Comments:

A. Background

Tucson Electric Power – Irvington Generating Station (TEP-IGS) produces electricity by fossil fuel combustion (coal, natural gas, liquid fuel, and landfill gas). Originally, TEP-IGS did not have the capacity to fire coal and was regulated by Pima County Health Services.

In the late 1990’s TEP requested that jurisdiction over TEP-IGS be returned to Pima County Department of Environmental Quality, (PDEQ); the transfer was completed shortly after ADEQ issued a 5-year Class I permit to TEP IGS (issue date July 26, 1999). PDEQ’s authority over this EUSGU and any standards adopted by ADEQ affecting EUSGUs is through a delegation agreement signed between PDEQ and ADEQ. Upon expiration of the permit, PDEQ issued the renewal permit on September 24, 2007.

B. Legal Notes

Mercury Control Consent Order

On March 15, 2005, the United States Environmental Protection Agency (EPA) promulgated the Clean Air Mercury Rule (CAMR) to address emissions of mercury from EUSGUs. CAMR applied to most EUSGUs including those at TEP-IGS. On January 29, 2007, ADEQ finalized Arizona Administrative Code (A.A.C.) R18-2-734 (State Mercury Rule) which incorporated CAMR monitoring provisions as the compliance method. On February 8, 2008, the United States Court of Appeals for the District of Columbia vacated CAMR, which created regulatory uncertainty for both ADEQ and TEP in regards to the State Mercury Rule. On February 18, 2009, ADEQ and TEP-IGS entered into a Consent Order (Docket A-15-09) which requires TEP to implement an interim mercury control strategy at TEP-IGS without interfering with TEP-IGS’s ability to comply with the State Mercury Standard beginning on December 31, 2016, and the eventual Maximum Achievable Control Technology (MACT) standard that will address mercury emissions from EUSGUs. TEP-IGS’s control strategy will result in an estimated minimum facility-wide annual average reduction in mercury emissions of 50 percent (or output-based emissions of 0.0087 pounds/ gigawatt-hr) during the time period of January 1, 2011 through December 31, 2015, while the State Mercury Rule would have resulted in an estimated reduction of 54 percent for the same time period. This significant revision contains an enforceable mercury reduction operation and maintenance (O&M) plan as well as a requirement to submit, by January 1, 2014, an application for another significant revision which will contain a control strategy for meeting the State Mercury Standard.

On June 22, 2009, TEP-IGS submitted a significant permit revision to incorporate provisions of the Consent Order addressing State’s mercury emissions monitoring, recordkeeping and reporting provisions.

C. Other Notes

This TSD is an addendum to the TSD issued with the 2007 renewal and only addresses the significant revision submitted for incorporation of the Consent Order standards.

D. Attainment Classification

TEP-IGS is located in a region that is designated as attainment for all criteria pollutants.
II. Source Description

A. Process Description

There are no new units being installed and no increase in emissions associated with this revision. The unit affected by is the coal-fired steam turbine cycle boiler, Unit I4. The revision incorporates mercury emissions monitoring, recordkeeping and reporting provisions.

B. Operating Schedule

This revision does not affect the operating schedule for TEP-IGS.

C. Affected Equipment

The affected equipment as discussed above is the coal-fired Unit I4.

D. Air Pollution Control Equipment

None required with this revision.

III. Regulatory History

TEP is currently in compliance with all permit and regulatory requirements.

A. Testing & Inspections

Inspections have been conducted regularly since PDEQ took over jurisdiction from ADEQ. The last completed inspection was concluded in 2006.

B. Excess Emissions

There have been no notices of violations for any excess emissions since the permit was renewed.

IV. Emission Estimates

Potential to Emit estimates are not required with this revision. Mercury potential to emit estimates are required to be submitted no later than January 31, 2014.

V. Applicable Requirements

Standards incorporated by this revision are as follows:

1. Consent Order (Docket A-15-09)

 a. Part of the language for III.B.1 was proposed by TEP-IGS. This language was obtained from the definition of operation and maintenance requirements found in 40 CFR 63.69(e)(1)(i). The language cited from there states “…At all times, including periods of startup, shutdown, and malfunction, the owner or operator must operate and maintain any affected source, including associated air pollution control equipment and monitoring equipment, in a manner consistent with safety and good air pollution control practices for minimizing emissions…” The language found in 40 CFR 63.6(e)(1)(i) shall be used to determine whether TEP-IGS is in compliance with III.B.1.
b. Mercury Control Strategy O&M Plan. The consent order requires a locally (PDEQ) enforceable O&M plan for mercury control.

c. In accordance with the Consent Order III.A.2, TEP is required to demonstrate in the significant revision application submitted that the mercury control strategy is designed to achieve a 50% reduction of total mercury emissions (based on inlet mercury) in the coal or 0.0087 lb/GWh (based on outlet mercury). The application submitted by TEP on June 22, 2009 and mercury test results submitted April 5, 2010, demonstrated that a 50% reduction of total mercury emissions is achieved. Subsequent testing to be conducted each calendar year should verify these results.

d. In accordance with the Consent Order III.A.4, TEP is required to propose a monitoring system, recordkeeping and reporting methods for determining mercury emissions from Unit I4 and for assuring that the control system is functioning in accordance with the O&M Plan. This proposal was included with the application submitted June 22, 2009.

e. Monitoring Requirements

i. The Permittee is required to perform monthly mercury and heating value analyses for coal combusted at the facility or utilize coal samples as provided by the supplier.

ii. The Permittee is required to determine and record for each calendar year Unit I4’s annual percent reduction of mercury emissions or the output-based emissions depending upon the control strategy selected per III.A.1.a of the Consent Order.

c. Testing Requirements

i. The Permittee is required to perform annual Method 29 (or an equivalent method approved by the Control Officer) stack tests for mercury on Unit I4 during each year in which coal-firing occurs in Unit I4.

VI. Permit Contents

1. Consent Order

The permit conditions incorporated into Attachment I of the permit are to address the requirements of the Consent Order signed between ADEQ & TEP-IGS, specifically, ADEQ Consent Order #A-15-09, Section III.A & IV.
October 29, 2010; Second Addendum to TSD Issued May 18, 2007

I. General Comments:

This TSD is an addendum to the TSD issued with the 2007 renewal and only addresses the incorporation of a minor revision submitted for installation of two emergency generators. The generators installed are one NSPS and one Non-NSPS generator.

Attainment Classification

TEP-IGS is located in a region that is designated as attainment for all criteria pollutants.

II. Source Description

A. Process Description

There are no new units being installed and no increase in emissions associated with this revision. The unit affected by is the coal-fired steam turbine cycle boiler, Unit I4. The revision incorporates mercury emissions monitoring, recordkeeping and reporting provisions.

B. Operating Schedule

This revision does not affect the operating schedule for TEP-IGS.

C. Affected Equipment

The affected equipment as discussed above is the coal-fired Unit I4.

D. Air Pollution Control Equipment

None required with this revision.

III. Regulatory History

TEP is currently in compliance with all permit and regulatory requirements.

A. Testing & Inspections

Inspections have been conducted regularly since PDEQ took over jurisdiction from ADEQ. The last completed inspection was concluded in 2006.

B. Excess Emissions

There have been no notices of violations for any excess emissions since the permit was renewed.
IV. Emission Estimates

Potential to Emit estimates are not required with this revision. No emission estimates required for emergency generators. In any case emission estimates for the two emergency generators are included in the permit application.

V. Applicable Requirements

Standards incorporated by this revision are as follows:

Emergency Generator Standards

A. Opacity Standard

1. II.A prohibits the Permittee from emitting smoke from NSPS generators in excess of 20% opacity. Cold engines exempt for the first 10 minutes.

2. II.B prohibits the Permittee from emitting smoke from non-NSPS generators in excess of 40% opacity; first 10 minutes immediately after startup are exempt from this opacity limit.

3. II.C prohibits the Permittee from emitting smoke from generators in excess of 60% opacity when engines are cold or are being accelerated under load.

4. II.D is a requirement to conduct quarterly checks of visible emissions and keep records of such inspections.

5. II.E is a provision that allows the Control Officer to require a Method 9 test conducted by the Permittee should it be necessary

B. Fuel Limitation

1. IV.A is a prohibition from firing fuels other than those allowed by the permit. This is a synthetic emission limitation for Non-NSPS engines as firing alternate fuels may result in an increase in emissions above major source thresholds. There is also a prohibition from firing fuel with a sulfur content greater than 0.9% by weight. This requirement is the basis for not requiring measures to show compliance with PCC 17.16.340.F. NSPS engines have their own requirements that have been prescribed by EPA.

2. IV.B is a requirement to maintain records of fuel specifications to demonstrate compliance with IV.A of the Attachment J.

C. NSPS Standards

1. The NSPS standards incorporated in the permit are those federal standards from 40 CFR 60, Subpart III that apply to emergency engines manufactured after 2007 and are contained in the NSPS Emergency Generators section in Attachment J of the permit. The NSPS engine installed by TEP-IGS was manufactured in 2008.

2. Constant speed engines are exempt from the opacity requirements of the NSPS. (TEP’s NSPS generator is a constant speed engine.)
APPENDIX B

Arizona Department of Health Services Installation Permit (# 1156)
1. Bureau of Air Quality Control personnel will be allowed to make periodic inspections, as necessary, per Arizona Code of Rules and Regulations (A.C.R.R.) R9-3-1102.

2. A monthly progress report on the construction of facilities affecting the fuel conversion shall be sent to the Department of Health Services, Bureau of Air Quality Control. When appropriate, it shall contain details on the air pollution equipment or control and changes in any other equipment or design that will affect air pollution. Construction drawings and supporting data as required by Appendix 1 of the Arizona Code of Rules and Regulations shall be furnished to the Bureau as they become available.

3. An accurate coal analysis of the sub-bituminous coal to be used at Irvington Station must be supplied to the Bureau of Air Quality Control prior to application for an operating permit for Irvington Station Unit No. 4 by an independent company or agent. Tucson Electric Power Company will continue to supply the analysis on a quarterly basis, following start-up after retrofitting Unit No. 4.

4. The maximum sulfur content of the coal shall be equal to or less than 0.50 percent by weight at 10,000 BTU/lb on a three hour average basis. Regardless of heating value, SO₂ emissions shall not exceed 1.0 pound per million BTU (lb/MMBTU).

5. A visual emissions and mass emission test shall be conducted and successfully passed in accordance with the Arizona Testing Manual and with A.C.R.R. R9-3-312 and R9-3-503 prior to the granting of the operating permit. The NOₓ emissions shall not exceed 0.7 lbs/MMBTU, the SO₂ emissions shall not exceed 1.0 lbs/MMBTU, and the opacity shall not exceed 20 percent. The heat input utilized in determining the allowable concentration of NOₓ shall be restricted to that produced by the fuel corresponding to the NOₓ emission standard selected.

6. All of the power plant stacks shall be constructed to include a continuous monitoring system, conforming to A.C.R.R. R9-3-313. The continuous monitoring system shall measure the opacity, NOₓ, SO₂, and either O₂ or CO₂. A permanent record of these measurements shall be kept by Tucson Electric Power Company for a period of two years and shall be made available upon request by the Bureau of Air Quality Control personnel. Excess emissions shall be reported in accordance with A.C.R.R. R9-3-314.
7. Spray bars shall be used in conjunction with other air pollution control equipment in the coal and flyash handling/storage systems to prevent fugitive dust. The conveyor belt transfer systems shall be covered and the entire system shall conform to A.C.R.R. R9-3-406 and R9-3-407.

8. Baghouses shall be kept in good repair with regularly scheduled inspections to find and replace torn bags. An inspection/maintenance schedule shall be provided to the Bureau of Air Quality Control prior to granting of the operating permit.

9. A total suspended particulates (TSP) monitor (Hi-Volume sampler) shall be installed by Tucson Electric Power Company immediately upon issuance of this installation permit on a site approved by the Bureau of Air Quality Control for the purposes of monitoring fugitive emissions from the construction phase of the coal conversion project and fugitive coal and flyash emissions. The sampling shall follow the BAQC-approved six-day schedule and a monthly data report shall be forwarded to the Bureau of Air Quality Control by the 15th of each succeeding month.

10. The loading sleeve on the flyash hopper shall incorporate a cut-off valve. (This valve is listed as optional by the manufacturer). Flyash shall be wetter prior to any handling in an open area. In order to prevent air pollution, the flyash handling area shall be paved, preferably with concrete, and the haul road to the yard disposal area shall also be paved. The haul road shall be temporarily stabilized with a dust suppressant acceptable to the Director of the Arizona Department of Health Services prior to completion of construction.

11. The flyash shall be loaded into enclosed hopper trucks through a closed gravity feed system and the outer sleeve of the dual sleeve system shall seal with the loading port of the truck and it shall be vented back to the hopper baghouse.

12. Except for short-term fuel switching (three hours or less), alternate fuels shall not be fired simultaneously.

13. The Director of Health Services reserves the right to require any additional air pollution control equipment as deemed necessary.
Mr. Thomas Via, Vice President
Tucson Electric Power Company
P. O. Box 711
Tucson, Arizona 85702

Dear Mr. Via:

We are pleased to enclose the installation permit covering the conversion of the Irvington Generating Station from gas and oil fuels to a bituminous coal fuel. This permit with its conditions is being granted in accordance with A.C.R.R. R9-3-301 and must be completely satisfied before an operating permit can be issued. While the conversion is being carried out as required by a prohibition order from the U. S. Department of Energy which exempts the requirements for the prevention of significant deterioration in an attainment area, the conversion must still meet the ambient air quality regulations of Arizona.

Considering that it is the prime responsibility of this Department to control present and future sources of emissions in a manner that insures the health, safety and general welfare of the public, there is a certain degree of apprehension on our part regarding the marginal attainment of standards. This concern has been expressed previously and, for your information, enclosed is a fact sheet reiterating the areas of concern. As you can see, particulate matter does not appear to be a problem since your applied controls result in an emission rate well below the State limit. This is most gratifying in view of the station being located within a nonattainment area for total suspended particulates.

The uncontrolled emission rate of sulfur dioxide, however, is very close to the State limit and presents a possible problem since this particular emission is occurring in an attainment area for this pollutant. The concern here, of course, is that an inability to meet the required limit could result in a need for considering necessary control equipment.

Similarly, the controlled emission rate of oxides of nitrogen is practically equivalent to the State limit. It poses a critical concern for coal conversion which might produce a "brown cloud" of pollution over Tucson. Because of this possibility, it becomes extremely important that the modifications to the boilers be designed to minimize these emissions.

In addition, calculations indicate the possibility on certain days of a 10 percent reduction in visibility for the Tucson area due mainly to sulfates generated from burning coal at the Irvington Station.
In keeping with our concerns, we wish to emphasize the need for an effective monitoring program as required by the conditions of the installation permit. Your cooperation is appreciated and we look forward to working with you in the best interests of the conversion satisfying air quality standards.

Sincerely,

[Signature]

James E. Sarn, M.D., M.P.H.
Director

cc: J. Wesley Clayton, Ph.D., Assistant Director
 Arthur A. Aymar, P.E., Chief, Bureau of Air Quality Control
A. TOTAL EMISSIONS (Using AP-42)

<table>
<thead>
<tr>
<th></th>
<th>Uncontrolled (t/yr)</th>
<th>Controlled (t/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
<td>123,400</td>
<td>247</td>
</tr>
<tr>
<td>SO₂</td>
<td>11,932</td>
<td>---</td>
</tr>
<tr>
<td>CO</td>
<td>628</td>
<td>---</td>
</tr>
<tr>
<td>HC</td>
<td>188</td>
<td>---</td>
</tr>
<tr>
<td>NOₓ</td>
<td>18,840</td>
<td>12,686*</td>
</tr>
</tbody>
</table>

* Includes tangential firing as a control. No other controls are included.

B. EMISSION RATES (Using AP-42)

<table>
<thead>
<tr>
<th></th>
<th>Uncontrolled</th>
<th>Controlled</th>
<th>State Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
<td>28174 lbs/hr</td>
<td>56.4 lbs/hr</td>
<td>465 lbs/hr</td>
</tr>
<tr>
<td>SO₂</td>
<td>.95 lbs/MMBTU**</td>
<td>---</td>
<td>1.0 lb/MMBTU</td>
</tr>
<tr>
<td>CO</td>
<td>.05 lbs/MMBTU</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>HC</td>
<td>.02 lbs/MMBTU</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>NOₓ</td>
<td>1.5 lbs/MMBTU</td>
<td>.69 lbs/MMBTU*</td>
<td>.7 lbs/MMBTU</td>
</tr>
</tbody>
</table>

* Tucson Electric Power's (TEP) estimate of NOₓ emissions. The BAQC cannot disagree, but our best estimate is less than 1.01 lbs/MMBTU when all four units are using coal. However, the estimate did not include all of the controls.

**Based on a heat input of 10,000 BTU/lb coal and a .5% sulfur in the coal.

C. CONCENTRATION: (Using TEP's Environmental Assessment)

1. Long Term

<table>
<thead>
<tr>
<th></th>
<th>3hr(µg/m³)</th>
<th>24hr(µg/m³)</th>
<th>Annual</th>
<th>Increase in 24hr(µg/m³)</th>
<th>De Minimus(µg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
<td>---</td>
<td>11.3</td>
<td>2</td>
<td>7.4</td>
<td>10(24 hr)</td>
</tr>
<tr>
<td>SO₂</td>
<td>493</td>
<td>115</td>
<td>21.9</td>
<td>75.2</td>
<td>13(24 hr)</td>
</tr>
<tr>
<td>NOₓ</td>
<td>NA</td>
<td>NA*</td>
<td>12.5</td>
<td>40.0</td>
<td>14(24 hr)</td>
</tr>
</tbody>
</table>

* NOₓ values were greatly underestimated; nevertheless, using an approximate 5:1 ratio (24 hr:annual) found in actual data, the De Minimus is exceeded.

2. Short-Term (From letter MS:GRN:133-81 & TEP's Environmental Assessment)

<table>
<thead>
<tr>
<th></th>
<th>Coal(µg/m³)</th>
<th>1979 Oil/Gas(µg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
<td>10.8</td>
<td>12</td>
</tr>
<tr>
<td>SO₂</td>
<td>504</td>
<td>124</td>
</tr>
<tr>
<td>NOₓ</td>
<td>465</td>
<td>306</td>
</tr>
</tbody>
</table>

D. VISIBILITY

The staff meteorologist gives a rough estimate of a 10 percent reduction in visibility for the Tucson area, due mainly to sulfates generated from burning coal at the Irvington Station.
1. PERMIT TO BE ISSUED TO (Business License Name of Organization that is to receive permit)

Tucson Electric Power Company

2. NAME (OR NAMES) OF OWNER OR PRINCIPALS DOING BUSINESS AS THE ABOVE ORGANIZATION

J. Thomas Via, Jr., Vice President

3. MAILING ADDRESS

Post Office Box 711
Tucson, Arizona 85726

4. EQUIPMENT LOCATION ADDRESS

4350 East Irvington Road
Tucson, Arizona 85726

5. FACILITIES OR EQUIPMENT DESCRIPTION

Retrofit of Units 1, 2, 3, and 4 of Irvington Generating Station, installation of baghouses, increase stack height to 248 feet, installation of coal and flyash handling/storage facilities, and associated equipment.

6. THIS PERMIT ISSUED SUBJECT TO THE FOLLOWING

See Attachment "1"

7. ADHS PERMIT NUMBER

1156

PERMIT CLASS

A

ISSUED THIS 14th DAY OF October 1981

James E.

SIGNATURE

Director

The issuance of this permit shall in no way be construed as a warranty affirmation or indication that the equipment described herein will qualify for an operating permit. It is the sole responsibility of the applicant to comply with all applicable air pollution laws, regulations, and standards.
1. Bureau of Air Quality Control personnel will be allowed to make periodic inspections, as necessary, per Arizona Code of Rules and Regulations (A.C.R.R.) R9-3-1102.

2. A monthly progress report on the construction of facilities affecting the fuel conversion shall be sent to the Department of Health Services, Bureau of Air Quality Control. When appropriate, it shall contain details on the air pollution equipment or controls and changes in any other equipment or design that will affect air pollution. Construction drawings and supporting data as required by Appendix 1 of the Arizona Code of Rules and Regulations shall be furnished to the Bureau as they become available.

3. An accurate coal analysis of the sub-bituminous coal to be used at Irvington Station must be supplied to the Bureau of Air Quality Control prior to application for an operating permit for Irvington Station Unit No. 4 by an independent company or agent. Tucson Electric Power Company will continue to supply the analysis on a quarterly basis, following start-up after retrofitting Unit No. 4.

4. The maximum sulfur content of the coal shall be equal to or less than .50 percent by weight at 10,000 BTU/lb on a three hour average basis. Regardless of heating value, SO₂ emissions shall not exceed 1.0 pound per million BTU (1b/MMBTU).

5. A visual emissions and mass emissions test shall be conducted and successfully passed in accordance with the Arizona Testing Manual and with A.C.R.R. R9-3-312 and R9-3-503 prior to the granting of the operating permit. The NOₓ emissions shall not exceed 0.7 lbs/MMBTU, the SO₂ emissions shall not exceed 1.0 lbs/MMBTU, and the opacity shall not exceed 20 percent. The heat input utilized in determining the allowable concentration of NOₓ shall be restricted to that produced by the fuel corresponding to the NOₓ emission standard selected.
6. All of the power plant stacks shall be constructed to include a continuous monitoring system, conforming to A.C.R.R. R9-3-313. The continuous monitoring system shall measure the opacity, NOx, SOx, and either O2 or CO2. A permanent record of these measurements shall be kept by Tucson Electric Power Company for a period of two years and shall be made available upon request by the Bureau of Air Quality Control personnel. Excess emissions shall be reported in accordance with A.C.R.R. R9-3-314.

7. Spray bars shall be used in conjunction with other air pollution control equipment in the coal and flyash handling/storage systems to prevent fugitive dust. The conveyor belt transfer systems shall be covered and the entire system shall conform to A.C.R.R. R9-3-406 and R9-3-407.

8. Baghouses shall be kept in good repair with regularly scheduled inspections to find and replace torn bags. An inspection/maintenance schedule shall be provided to the Bureau of Air Quality Control prior to granting of the operating permit.

9. A total suspended particulates (TSP) monitor (Hi-Volume sampler) shall be installed by Tucson Electric Power Company immediately upon issuance of this installation permit on a site approved by the Bureau of Air Quality Control for the purposes of monitoring fugitive emissions from the construction phase of the coal conversion project and fugitive coal and flyash emissions. The sampling shall follow the BAQC-approved six-day schedule and a monthly data report shall be forwarded to the Bureau of Air Quality Control by the 15th of each succeeding month.

10. The loading sleeve on the flyash hopper shall incorporate a cut-off valve. (This valve is listed as optional by the manufacturer). Flyash shall be wetted prior to any handling in an open area. In order to prevent air pollution, the flyash handling area shall be paved, preferably with concrete, and the haul road to the yard disposal area shall also be paved. The haul
road shall be temporarily stabilized with a dust suppressant acceptable to the Director of the Arizona Department of Health Services prior to completion of construction.

11. The flyash shall be loaded into enclosed hopper trucks through a closed gravity feed system and the outer sleeve of the dual sleeve system shall seal with the loading port of the truck and it shall be vented back to the hopper baghouse.

12. Except for short-term fuel switching (three hours or less), alternate fuels shall not be fired simultaneously.

13. The Director of Health Services reserves the right to require any additional air pollution control equipment as deemed necessary.
APPENDIX C

Previous Air Quality Permit #1052
PIMA COUNTY DEPARTMENT OF ENVIRONMENTAL QUALITY
Air Program
33 North Stone Avenue, Suite 700, Tucson, AZ 85701, Phone: (520) 243-7400

AIR QUALITY OPERATING PERMIT
(As required by Title 17.12, Article II, Pima County Code)

ISSUED TO

TUCSON ELECTRIC POWER
IRVINGTON GENERATING STATION
3950 EAST IRVINGTON ROAD
TUCSON, AZ 85714

This air quality operating permit does not relieve applicant of responsibility for meeting all air pollution regulations

THIS PERMIT ISSUED SUBJECT TO THE FOLLOWING: Conditions contained in Parts A, B AND Attachments C, D, E, F, G & H.

PDEQ PERMIT NUMBER 1052 PERMIT CLASS I

ISSUED: SEPTEMBER 24, 2007 REVISED: JULY 13 & OCTOBER 29, 2010

EXPIRES: SEPTEMBER 23, 2012

Mukonde Chama, P.E., Air Permits Supervisor, PDEQ

October 29, 2010
This operating permit is the first 5-year air quality permit issued by the Pima County Department of Environmental Quality (PDEQ) to Tucson Electric Power – Irvington Generating Station, (TEP-IGS), the Permittee. The permit was revised in April 2010 to include the mercury emission monitoring standards. The facility is a major source of all criteria pollutants as well as individual and combined HAPs. The facility is a stationary source which generates electricity and consists primarily of fossil-fuel fired steam generating units (boilers) and stationary combustion turbines as well as engines, cooling towers, and other processes and equipment associated with power production and delivery as well as fuel preparation and transfer.

The Permittee previously operated under an air quality permit issued by the Arizona Department of Environmental Quality, (ADEQ). In 2001 permitting authority for TEP-IGS was transferred from ADEQ to PDEQ.

TEP-IGS is subject to Title V permitting requirements, Standards of Performance for Stationary Combustion Turbines (40 CFR 60 Subpart GG or Subpart KKKK for Unit IGT3), Compliance Assurance Monitoring (40 CFR 64), ADEQ-TEP Consent Order dated February 17, 2009 and the Acid Rain Program of the Clean Air Act (40 CFR 72-80).

All terms and conditions of this permit are federally enforceable by the Administrator of the United States Environmental Protection Agency (U.S.EPA) under the Clean Air Act, except as otherwise noted.
I. PERMIT EXPIRATION AND RENEWAL

A. This permit is valid for a period of five years from the date of issuance of the permit.

B. The Permittee shall submit an application for renewal of this permit at least 6 months, but not greater than 18 months prior to the date of permit expiration.

II. COMPLIANCE WITH PERMIT CONDITIONS

A. The Permittee shall comply with all conditions of this permit including all applicable requirements of Arizona air quality statutes A.R.S. Title 49, Chapter 3, and Pima County air quality rules. Any permit noncompliance is grounds for enforcement action; for permit termination, revocation and reissuance, or revision; or for denial of a permit renewal application. In addition, noncompliance with any federally enforceable requirement constitutes a violation of the Clean Air Act.

B. It shall not be a defense for a Permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of this permit.

III. PERMIT REVISION, REOPENING, REVOCATION AND REISSUANCE, OR TERMINATION FOR CAUSE

A. The permit may be revised, reopened, revoked and reissued, or terminated for cause. The filing of a request by the Permittee for a permit revision, revocation and reissuance, or termination; or of a notification of planned changes or anticipated noncompliance does not stay any permit condition.

B. The permit shall be reopened and revised under any of the following circumstances:

1. Additional applicable requirements under the Act become applicable to a major source. Such reopening shall only occur if there are three or more years remaining in the permit term. The reopening shall be completed not later than 18 months after promulgation of the applicable requirement. No such reopening is required if the effective date of the requirement is later than the date on which the permit is due to expire, unless the original permit or any of its terms and conditions has been extended pursuant to PCC 17.12.280. Any permit reopening required pursuant to this paragraph shall comply with provisions in PCC 17.12.280 for permit renewal and shall reset the five-year permit term.

2. Additional requirements, including excess emissions requirements, become applicable to an affected source under the acid rain program. Upon approval by the Administrator, excess emissions offset plans shall be deemed to be incorporated into the Class I permit.
3. The Control Officer or the Administrator determines that the permit contains a material mistake or that inaccurate statements were made in establishing the emissions standards or other terms or conditions of the permit.

4. The Control Officer or the Administrator determines that the permit needs to be revised or revoked to assure compliance with the applicable requirements.

C. Proceedings to reopen and issue a permit, including appeal of any final action relating to a permit reopening, shall follow the same procedures as apply to initial permit issuance. Such reopenings shall be made as expeditiously as practicable. Permit reopenings for reasons other than those stated in paragraph III.B.1 of Part A shall not result in the resetting of the five-year permit term.

IV. POSTING OF PERMIT

The Permittee who has been granted an individual permit by PDEQ or a general permit by ADEQ shall maintain a complete copy of the permit onsite. If it is not feasible to maintain a copy of the permit onsite, the permittee may request, in writing, to maintain a copy of the permit at an alternate location. Upon written approval by the Control Officer, the permittee must maintain a complete copy of the permit at the approved alternative location.

V. FEE PAYMENT

Permittee shall pay fees to the Control Officer pursuant to PCC 17.12.510.

VI. ANNUAL EMISSIONS INVENTORY QUESTIONNAIRE

A. When requested by the Control Officer, the Permittee shall complete and submit an annual emissions inventory questionnaire. The questionnaire is due by March 31 or ninety days after the Control Officer makes the request and provides the inventory form each year, whichever occurs later, and shall include emission information for the previous calendar year. These requirements apply whether or not a permit has been issued and whether or not a permit application has been filed.

B. The questionnaire shall be on a form provided by or approved by the Control Officer and shall include the information required by PCC 17.12.320.

VII. COMPLIANCE CERTIFICATION

The Permittee shall submit to the Control Officer a compliance certification that describes the compliance status of the source with respect to each permit condition. Certifications shall be submitted as specified in Part B of this permit.

A. The compliance certification shall include the following:

1. Identification of each term or condition contained in the permit including emission limitations, standards, or work practices that are the basis of the certification;
2. Identification of the method(s) or other means used by the Permittee for determining the compliance status of the source with each term and condition during the certification period. Such methods and other means shall include, at a minimum, the methods and means required under the monitoring, related recordkeeping and reporting sections of this permit. If necessary, the owner or operator also shall identify any other material information that must be included in the certification to comply with Section 113(c)(2) of the Clean Air Act, which prohibits knowingly making a false certification or omitting material information.;

3. The status of compliance with the terms and conditions of the permit for the period covered by the certification, including whether compliance during the period was continuous or intermittent. The certification shall identify each deviation and take it into account in the compliance certification;

4. For emission units subject to 40 CFR 64, the certification shall also identify as possible exceptions to compliance any period during which compliance is required and in which an excursion or exceedance defined under 40 CFR 64 occurred;

5. A progress report on all outstanding compliance schedules submitted pursuant to PCC 17.12.220; and

6. Other facts the Control Officer may require to determine the compliance status of the facility.

B. A copy of all compliance certifications for Class I permits shall also be submitted to the EPA Administrator. The address for the EPA administrator is:

EPA Region 9 Enforcement Office, 75 Hawthorne St (Air-5), San Francisco, CA 94105

VIII. CERTIFICATION OF TRUTH, ACCURACY AND COMPLETENESS

Any document required to be submitted by this permit, including reports, shall contain a certification by a responsible official of truth, accuracy, and completeness. This certification and any other certification required by this permit shall state that, based on information and belief formed after reasonable inquiry, the statements and information in the document are true, accurate, and complete.

IX. INSPECTION AND ENTRY

The Permittee shall allow the Control Officer or the authorized representative of the Control Officer upon presentation of proper credentials to:

A. Enter upon the Permittee’s premises where a source is located or emissions-related activity is conducted, or where records are required to be kept under the conditions of the permit;

B. Have access to and copy, at reasonable times, any records that are required to be kept under the conditions of the permit;

C. Inspect, at reasonable times, any facilities, equipment (including monitoring and air pollution control equipment), practices, or operations regulated or required under the permit;

6

October 29, 2010
D. Sample or monitor, at reasonable times, substances or parameters for the purpose of assuring compliance with the permit or other applicable requirements; and

E. Record any inspection by use of written, electronic, magnetic and photographic media.

X. PERMIT REVISION PURSUANT TO FEDERAL HAZARDOUS AIR POLLUTANT STANDARD

If this source becomes subject to a standard promulgated by the Administrator pursuant to section 112(d) of the Act, then the Permittee shall, within twelve months of the date on which the standard is promulgated, submit an application for a permit revision demonstrating how the source will comply with the standard.

XI EXCESS EMISSIONS, PERMIT DEVIATIONS, AND EMERGENCY REPORTING

A. Excess Emissions Reporting

1. Excess emissions shall be reported as follows:
 a. The permittee shall report to the Control Officer any emissions in excess of the limits established by this permit. The report shall be in 2 parts as specified below:
 i. Notification by telephone or facsimile within 24 hours of the time the permittee first learned of the occurrence of excess emission that includes all available information from 17.12.040.B. The number to call to report excess emissions is 520-243-7400. The facsimile number to report excess emissions is 520-243-7370.
 ii. Detailed written notification by submission of an excess emissions report within 72 hours of the notification under XI.A.1.a.i of Part A above. Notifications should be sent to:
 PDEQ Air Program 33 N. Stone Avenue, Suite 700 Tucson, Arizona 85701.
 b. The excess emission report shall contain the following information:
 i. The identity of each stack or other emission point where the excess emission occurred;
 ii. The magnitude of the excess emissions expressed in the units of the applicable emission limitation and the operating data and calculations used in determining the magnitude of the excess emissions;
 iii. The time and duration or expected duration of the excess emissions;
 iv. The identity of the equipment from which the excess emissions emanated;
 v. The nature and cause of the emissions;
vi. The steps taken, if the excess emissions were the result of a malfunction, to remedy the malfunction and the steps taken or planned to prevent the recurrence of the malfunctions;

vii. The steps that were or are being taken to limit the excess emissions; If the source’s permit contains procedures governing source operation during periods of startup or malfunction and the excess emissions resulted from startup or malfunction, a list of the steps taken to comply with the permit procedures.

2. In the case of continuous or recurring excess emissions, the notification requirements of this Section shall be satisfied if the source provides the required notification after excess emissions are first detected and includes in the notification an estimate of the time the excess emissions will continue. Excess emissions occurring after the estimated time period or changes in the nature of the emissions as originally reported shall require additional notification pursuant to XI.A.1.a & b of Part A above.

B. Permit Deviations Reporting

The Permittee shall promptly report deviations from permit requirements, including those attributable to upset conditions as defined in the permit, the probable cause of such deviations, and any corrective actions or preventive measures taken. Notice in accordance with 17.12.180.E.3.d shall be considered prompt for purposes of this permit.

C. Emergency Provision

1. An "Emergency" means any situation arising from sudden and reasonably unforeseeable events beyond the control of the source, including acts of God, that requires immediate corrective action to restore normal operation and that causes the source to exceed a technology-based emission limitation under the permit, due to unavoidable increases in emission attributable to the emergency. An emergency shall not include noncompliance to the extent caused by improperly designed equipment, lack of preventive maintenance, careless or improper operation, or operator error.

2. An emergency constitutes an affirmative defense to an action brought for noncompliance with the technology-based emission limitations if the conditions of PCC 17.12.180.E.3 are met.

3. The affirmative defense of emergency shall be demonstrated through properly signed, contemporaneous operating logs, or other relevant evidence that:

 a. An emergency occurred and that the permittee can identify the cause or causes of the emergency;

 b. At the time of the emergency, the permitted facility was being properly operated;

 c. During the period of the emergency the permittee took all reasonable steps to minimize levels of emissions that exceeded the emissions standards or other requirements in the permit; and
d. The Permittee submitted notice of the emergency to the Control Officer by certified mail, hand delivery or facsimile transmission within two working days of the time when emission limitations were exceeded due to the emergency. This notice shall contain a description of the emergency, any steps taken to mitigate emissions, and corrective action taken.

4. In any enforcement proceeding, the permittee seeking to establish the occurrence of an emergency has the burden of proof.

5. This provision is in addition to any emergency or upset provision contained in any applicable requirement.

D. Compliance Schedule

For any excess emission or permit deviation that cannot be corrected within 72 hours, the permittee is required to submit a compliance schedule to the Director within 21 days of such occurrence. The compliance schedule shall include a schedule of remedial measures, including an enforceable sequence of actions with milestones, leading to compliance with the permit terms or conditions that have been violated.

E. Affirmative Defenses for Excess Emissions Due to Malfunctions, Startup, and Shutdown.

1. Applicability

This rule establishes affirmative defenses for certain emissions in excess of an emission standard or limitation and applies to all emission standards or limitations except for standards or limitations:

a. Promulgated pursuant to Sections 111 or 112 of the Act,

b. Promulgated pursuant to Titles IV or VI of the Clean Air Act,

c. Contained in any Prevention of Significant Deterioration (PSD) or New Source Review (NSR) permit issued by the U.S. E.P.A., or

d. Included in a permit to meet the requirements of PCC 17.16.590.A.5.

2. Affirmative Defense for Malfunctions

Emissions in excess of an applicable emission limitation due to malfunction shall constitute a violation. The owner or operator of a source with emissions in excess of an applicable emission limitation due to malfunction has an affirmative defense to a civil or administrative enforcement proceeding based on that violation, other than a judicial action seeking injunctive relief, if the owner or operator of the source has complied with the reporting requirements of XIII.B of this Part and has demonstrated all of the following:

a. The excess emissions resulted from a sudden and unavoidable breakdown of process equipment or air pollution control equipment beyond the reasonable control of the operator;
b. The air pollution control equipment, process equipment, or processes were at all times maintained and operated in a manner consistent with good practice for minimizing emissions;

c. If repairs were required, the repairs were made in an expeditious fashion when the applicable emission limitations were being exceeded. Off-shift labor and overtime were utilized where practicable to ensure that the repairs were made as expeditiously as possible. If off-shift labor and overtime were not utilized, the owner or operator satisfactorily demonstrated that the measures were impracticable;

d. The amount and duration of the excess emissions (including any bypass operation) were minimized to the maximum extent practicable during periods of such emissions;

e. All reasonable steps were taken to minimize the impact of the excess emissions on ambient air quality;

f. The excess emissions were not part of a recurring pattern indicative of inadequate design, operation, or maintenance;

g. During the period of excess emissions there were no exceedances of the relevant ambient air quality standards established in PCC Chapter 17.08 that could be attributed to the emitting source;

h. The excess emissions did not stem from any activity or event that could have been foreseen and avoided, or planned, and could not have been avoided by better operations and maintenance practices;

i. All emissions monitoring systems were kept in operation if at all practicable; and

j. The owner or operator’s actions in response to the excess emissions were documented by contemporaneous records.

3. Affirmative Defense for Startup and Shutdown

a. Except as provided in XI.E.3.b of Part A, and unless otherwise provided for in the applicable requirement, emissions in excess of an applicable emission limitation due to startup and shutdown shall constitute a violation. The owner or operator of a source with emissions in excess of an applicable emission limitation due to startup and shutdown has an affirmative defense to a civil or administrative enforcement proceeding based on that violation, other than a judicial action seeking injunctive relief, if the owner or operator of the source has complied with the reporting requirements of XIII.B of Part A and has demonstrated all of the following:

i. The excess emissions could not have been prevented through careful and prudent planning and design;

ii. If the excess emissions were the result of a bypass of control equipment, the bypass was unavoidable to prevent loss of life, personal injury, or
severe damage to air pollution control equipment, production equipment, or other property;

iii. The source’s air pollution control equipment, process equipment, or processes were at all times maintained and operated in a manner consistent with good practice for minimizing emissions;

iv. The amount and duration of the excess emissions (including any bypass operation) were minimized to the maximum extent practicable during periods of such emissions;

v. All reasonable steps were taken to minimize the impact of the excess emissions on ambient air quality;

vi. During the period of excess emissions there were no exceedances of the relevant ambient air quality standards established in PCC Chapter 17.08 that could be attributed to the emitting source;

vii. All emissions monitoring systems were kept in operation if at all practicable; and

viii. The Permittee’s actions in response to the excess emissions were documented by contemporaneous records.

b. If excess emissions occur due to a malfunction during routine startup and shutdown, then those instances shall be treated as other malfunctions subject to XI.E.2 of this Part A.

4. Affirmative Defense for Malfunctions during Scheduled Maintenance

If excess emissions occur due to a malfunction during scheduled maintenance, then those instances will be treated as other malfunctions subject to XI.E.2 of Part A.

5. Demonstration of Reasonable and Practicable Measures

For an affirmative defense under XI.E.2 or 3 of Part A, the Permittee of the source shall demonstrate, through submission of the data and information required by XI.E.1 – 5 and XII.B of Part A, that all reasonable and practicable measures within the owner or operator’s control were implemented to prevent the occurrence of the excess emissions.

XII. RECORD KEEPING REQUIREMENTS

A. Permittee shall keep records of all required monitoring information including, recordkeeping requirements established pursuant to PCC 17.12.190, where applicable, for the following:

1. The date, place as defined in the permit, and time of sampling or measurements;

2. The date(s) analyses were performed;

3. The name of the company or entity that performed the analyses;
4. A description of the analytical techniques or methods used;

5. The results of such analyses; and

6. The operating conditions as existing at the time of sampling or measurement.

B. The Permittee shall retain records of all required monitoring data and support information for a period of at least 5 years from the date of the monitoring sample, measurement, report, or application. Support information includes all calibration and maintenance records and all original strip-chart recordings for continuous monitoring instrumentation, and copies of all reports required by the permit.

C. All required records shall be maintained either in an unchangeable electronic format or in a handwritten log utilizing indelible ink.

XIII. REPORTING REQUIREMENTS

The Permittee shall comply with all of the reporting requirements of this permit. These include all of the following:

A. Compliance certifications pursuant to VII of this Part.

B. Excess emission; permit deviation, and emergency reports in accordance with XI of this Part.

C. Performance test results in accordance with XVII.F of this Part.

D. Reporting requirements listed in Part B of this permit.

XIV. DUTY TO PROVIDE INFORMATION

A. The Permittee shall furnish to the Control Officer, within a reasonable time, any information that the Control Officer may request in writing to determine whether cause exists for revising, revoking and reissuing, or terminating the permit or to determine compliance with the permit. Upon request, the Permittee shall also furnish to the Control Officer copies of records required to be kept by the permit. For information claimed to be confidential, the Permittee, for Class I sources, shall furnish an additional copy of such records directly to the Administrator along with a claim of confidentiality.

B. If the Permittee has failed to submit any relevant facts or if the Permittee has submitted incorrect information in the permit application, the Permittee shall, upon becoming aware of such failure or incorrect submittal, promptly submit such supplementary facts or corrected information. In addition, an applicant shall provide additional information as necessary to address any requirements that become applicable to the source after the date it filed a complete application but prior to release of a proposed permit.

XV. PERMIT AMENDMENT OR REVISION

Permittee shall apply for a permit amendment or revision for changes to the facility which do not qualify for a facility change without revision under XVI of Part A, as follows:

October 29, 2010
A. Administrative Permit Amendment (PCC 17.12.245);

B. Minor Permit Revision (PCC 17.12.255);

C. Significant Permit Revision (PCC 17.12.260).

The applicability and requirements for such action are defined in the above referenced regulations.

XVI. FACILITY CHANGES ALLOWED WITHOUT PERMIT REVISIONS

A. A facility with a Class I permit may make changes without a permit revision if all of the following apply:

1. The changes are not modifications under any provision of Title I of the ACT (Air Pollution Prevention and Control) or under A.R.S. 49-401.01(17);

2. The changes do not exceed the emissions allowable under the permit whether expressed therein as a rate of emissions or in terms of total emissions;

3. The changes do not violate any applicable requirements or trigger any additional applicable requirements;

4. The changes satisfy all requirements for a minor permit revision under PCC 17.12.255; and

5. The changes do not contravene federally enforceable permit terms and conditions that are monitoring (including test methods), record keeping, reporting, or compliance certification requirements.

B. The substitution of an item of process or pollution control equipment for an identical or substantially similar item of process or pollution control equipment shall qualify as a change that does not require a permit revision, if the substitution meets all of the requirements of XVI.A, D and E of Part A.

C. Except for sources with authority to operate under general permits, permitted sources may trade increases and decreases in emissions within the permitted facility, as established in the permit under 17.12.180.A.12 if an applicable implementation plan provides for the emissions trades, without applying for a permit revision and based on the seven working days notice prescribed in XVI.D of Part A. This provision is available if the permit does not provide for the emissions trading as a minor permit revision.

D. For each change under XVI.A through C of this Part, a written notice, by certified mail or hand delivery, shall be received by the Control Officer and the Administrator a minimum of seven (7) working days in advance of the change. Notifications of changes associated with emergency conditions, such as malfunctions necessitating the replacement of equipment, may be provided less than 7 working days in advance of the change but must be provided as far in advance of the change, or if advance notification is not practicable as soon after the change as possible.

E. Each notification shall include:
1. When the proposed change will occur;

2. A description of the change;

3. Any change in emissions of regulated air pollutants;

4. The pollutants emitted subject to the emissions trade, if any;

5. The provisions in the implementation plan that provide for the emissions trade with which the source will comply and any other information as may be required by the provisions in the implementation plan authorizing the trade;

6. If the emissions trading provisions of the implementation plan are invoked, then the permit requirements with which the source will comply; and

7. Any permit term or condition that is no longer applicable as a result of the change.

F. The permit shield described in PCC 17.12.310 shall not apply to any change made under XVI.A through C of Part A. Compliance with the permit requirements that the source will meet using the emissions trade shall be determined according to requirements of the implementation plan authorizing the emissions trade.

G. Except as otherwise provided for in the permit, making a change from one alternative operating scenario to another as proved under PCC 17.12.180.A.11 shall not require any prior notice under XVI of Part A.

H. Notwithstanding any other part of this Section, the Control Officer may require a permit to be revised for any change that when considered together with any other changes submitted by the same source under this section over the term of the permit, do not satisfy XVI.A of this Part.

XVII. TESTING REQUIREMENTS

A. Operational Conditions During Testing

Performance Tests shall be conducted while the unit is operating at full load under representative operational conditions unless other conditions are required by the applicable test method or in this permit. With prior written approval from the Control Officer, testing may be performed at a lower rate. Operations during start-up, shutdown, and malfunction (as defined in PCC 17.04.340.A.) shall not constitute representative operational conditions unless otherwise specified in the applicable requirement.

B. Tests shall be conducted and data reduced in accordance with the test methods and procedures contained in the Arizona Testing Manual, 40 CFR 52; Appendices D and E, 40 CFR 60; Appendices A through F; and 40 CFR 61, Appendices B and C unless modified by the Control Officer pursuant to PCC 17.12.050.B or by the Director pursuant to A.A.C. R18-2-312.B.

C. Test Plan

At least 14 calendar days prior to performing a test, the Permittee shall submit a test plan to the Control Officer, in accordance with PCC 17.12.050.B. and the Arizona Testing Manual.
D. Stack Sampling Facilities

The Permittee shall provide or cause to be provided, performance testing facilities as follows:

1. Sampling ports adequate for test methods applicable to the facility;
2. Safe sampling platforms;
3. Safe access to sampling platforms; and
4. Utilities for sampling and testing equipment.

E. Interpretation of Final Results

Each performance test shall consist of three separate runs using the applicable test method. Each run shall be conducted for the time and under the conditions specified in the applicable standard. For the purpose of determining compliance with an applicable standard, the arithmetic means of results of the three runs shall apply. In the event that a sample is accidentally lost or conditions occur in which one of the three runs is required to be discontinued because of forced shutdown, failure of an irreplaceable portion of the sample train, extreme meteorological conditions, or other circumstances beyond the Permittee’s control, compliance may, upon the Control Officer’s approval, be determined using the arithmetic mean of the results of the other two runs. If the Control Officer or the Control Officer’s designee is present, tests may only be stopped with the Control Officer’s or such designee’s approval. If the Control Officer or the Control Officer’s designee is not present, tests may only be stopped for good cause. Good cause includes: forced shutdown, failure of an irreplaceable portion of the sample train, extreme meteorological conditions, or other circumstances beyond the Permittee’s control. Termination of any test without good cause after the first run is commenced shall constitute a failure of the test. Supporting documentation, which demonstrates good cause, must be submitted.

F. Report of Final Test Results

A written report of the results of all performance tests shall be submitted to the Control Officer within 45 days after the test is performed. The report shall be submitted in accordance with the Arizona Testing Manual.

XVIII. PROPERTY RIGHTS

This permit does not convey any property rights of any sort, or any exclusive privilege.

XIX. SEVERABILITY CLAUSE

The provisions of this permit are severable. If any provision of this permit is held invalid, the remainder of this permit shall not be affected thereby.
XX. ACCIDENT PREVENTION REQUIREMENTS UNDER THE CLEAN AIR ACT (CAA Section 112(r))

Should this stationary source, as defined in 40 CFR Part 68.3, become subject to the accidental release prevention regulations in Part 68, then the Permittee shall submit a risk management plan (RMP) by the date specified in Section 68.10 and shall certify compliance with the requirements of Part 68 as part of the semiannual compliance certification as required by 40 CFR Part 70 and Part B of this permit.

XXI. ASBESTOS REQUIREMENTS (Demolition/ Renovation)

Should this stationary source, pursuant to 40 CFR 61, Subpart M become subject to the National Emission Standards for Hazardous Air Pollutants - Asbestos for asbestos regulations when conducting any renovation or demolition at this premises, then the Permittee shall submit proper notification as described in 40 CFR Subpart M and shall comply with all other applicable requirements of subpart M. The Permittee shall keep a record of all relevant paperwork on file. [40 CFR 61, Subpart M]

XXII. STRATOSPHERIC OZONE DEPLETING SUBSTANCES

The Permittee shall not use, sell, or offer for sale any fluid as a substitute material for use in any motor vehicle, residential, commercial, or industrial air conditioning system, refrigerator or freezer unit, or other cooling or heating device designed to use a chlorofluorocarbon (CFC) or hydrochlorofluorocarbon (HCFC) compound as a working fluid, unless such fluid has been approved for sale and such use by the Administrator. The Permittee shall keep a record of all paperwork relevant to the applicable requirements of 40 CFR 82, Subpart F onsite. [40 CFR 82 & PCC 17.16.710]

October 29, 2010
Tucson Electric Power
Irvington Generating Station
Air Quality Permit # 1052

PART B: SPECIFIC CONDITIONS
All standards are Federally Enforceable unless otherwise noted
[References are to Title 17 of the Pima County Code unless otherwise noted]

I. APPLICABILITY

Equipment covered by this permit constitutes a Major Source based on 8760 hours of operation per year and considering emissions from other emission units of the same SIC Code at this facility. Equipment specifically addressed by the permit is listed in Attachment D, “Equipment List” and falls under the following Categories:

A. Fossil Fuel Fired Steam Generators
B. Stationary Rotating Machinery (including Stationary Turbines IGT1, IGT2 & future AOS for IGT3)
C. Auxiliary Boiler
D. Cooling Towers
E. Coal Preparation Plant
F. Fly-Ash Handling Systems
G. Open Areas, Roadways, & Streets
H. All Operations

Affected Emission Source Classification: Class I; Major Stationary Source (SOx, NOx, CO, VOC, PM$_{10}$ & HAPs).

II. EMISSION LIMITS & STANDARDS
[PCC 17.12.180.A.2]

A. Fossil Fuel Fired Steam Generators
 1. Particulate Matter Standard
 [PCC 17.16.160.C.1]
 [Locally Enforceable Condition]

 The Permittee shall not cause, allow, or permit the emission of particulate matter from any fossil fuel-fired steam generator in excess of the amounts calculated by the following equation:

 \[E = 1.02Q^{0.769} \]

 where:

 \(E \) = the maximum allowable particulate emissions rate in pounds-mass per hour.
 \(Q \) = the heat input in million Btu per hour.

 2. Sulfur Dioxide Standard
 [PCC 17.16.160.D.1]
 [Locally Enforceable Condition]

October 29, 2010
a. UNITS I1, I2, & I3

The Permittee shall not cause, allow, or permit the emission of more than 1.0 pound of sulfur dioxide as a three hour average per million Btu heat input when firing liquid fuel.

b. UNIT I4

The Permittee shall not cause, allow, or permit the emission of more than 1.0 pound of sulfur dioxide as a three-hour average, per million Btu heat input.

3. Nitrogen Oxides Standard - UNIT I4

The Permittee shall not cause, allow, or permit the emission of more than 0.7 pounds of nitrogen oxides as a three hour average (calculated as nitrogen dioxide) per million BTU heat input.

4. Opacity Standard - UNIT I4

The Permittee shall not cause, allow, or permit to be emitted into the atmosphere any plume or effluent from the boiler which exceeds 20 percent opacity, as measured in accordance with EPA Reference Method 9.

5. Fuel Limitations

a. The Permittee shall not use high sulfur oil (fuel sulfur content > 0.90% by weight) as a fuel unless the Permittee demonstrates to the satisfaction of the Control Officer that sufficient quantities of low sulfur oil are not available for use by the source and that it has adequate facilities and contingency plans to insure that the sulfur dioxide ambient air quality standards set forth in 17.08.020 will not be violated. [PCC 17.16.160.G]

b. UNITS I1, I2, & I3

The Permittee shall only burn the following as fuel: [PCC 17.12.190]

 i. Natural gas;
 ii. Fuel Oils #2 through #6 or equivalent;
 iii. Co-firing Natural gas with Fuel Oils #2 through #6 or equivalent;
 iv. Co-firing any of the fuels listed above (II.A.5.b.i through ii of this Part) with Landfill Gas.

c. UNIT I4

 i. The Permittee shall only burn the following as fuel: [PCC 17.12.190]

 (A) Coal;
 (B) Natural Gas;
(C) Fuel Oil #2 through #6;

(D) Co-Firing Natural Gas with coal or fuel oils #2 through #6;

(E) Co-firing Landfill Gas with fuels listed above (II.A.5.c.i.(A) through (C) of this Part).

(F) Except for short-term fuel switching (three hours or less), fuels shall not be fired simultaneously unless the continuous monitoring systems are operating. [Installation Permit #1156, Condition 12]

ii. The maximum sulfur content of coal shall be less than or equal to 0.50 percent by weight at 10,000 BTU/lb on a three hour average basis. [Installation Permit #1156, Condition 4]

B. Stationary Rotating Machinery (including Stationary Turbines IGT1 and IGT2)

The Permittee shall not cause, allow, or permit the emission of particulate matter, caused by combustion of fuel, from any of the stacks of stationary rotating machinery in excess of the amounts calculated by the following equation:

\[E = 1.02Q^{0.769} \]

where:

E = the maximum allowable particulate emissions rate in pounds-mass per hour.
Q = the heat input in million Btu per hour.

2. Sulfur Dioxide Standard

The Permittee shall not emit more than 1.0 pounds of sulfur per million Btu heat input when firing low sulfur oil. [PCC 17.16.340.F]

3. Opacity Standard

a. The Permittee shall not cause, allow or permit to be emitted into the atmosphere from any stationary rotating machinery, smoke for any period of time greater than ten consecutive seconds which exceeds 40 percent opacity. Visible emissions when starting cold equipment shall be exempt from this requirement (40 percent opacity) for the first ten minutes. [PCC 17.16.340.E] [Locally Enforceable Condition]

b. The Permittee shall not cause or permit the effluent from a single emission point, multiple emissions point, or fugitive emissions source to have an average optical density equal to or greater than opacity limiting standards specified in Table 321 of the Pima County Standard Implementation Plan (SIP): subject to the following provisions: [SIP Rule 321]

i. Opacities (optical densities) of an effluent shall be measured by a certified visible emissions evaluator with his natural eyes, approximately following the procedures
which were used during his certification, or by an approved and precisely calibrated in-stack monitoring instrument.

ii. A violation of an opacity standard shall be determined by measuring and recording a set of consecutive, instantaneous opacities, and calculating the arithmetic average of the measurements within the set unless otherwise noted herein. The measurements shall be made at approximately fifteen-second intervals for a period of at least six minutes, and the number of required measurements shall be as specified in Table 321. Sets need not be consecutive in time, and in no case shall two sets overlap. If the average opacity of the set of instantaneous measurements exceeds the maximum allowed by any rule, this shall constitute a violation.

iii. The use of air or other gaseous diluents solely for the purpose of achieving compliance with an opacity standard is prohibited.

iv. When the presence of uncombined water is the only reason for failure of a source to otherwise meet the requirements of II.B.3.b of Part B, II.B.3.b shall not apply.

4. Fuel Limitations

a. The Permittee shall not use high sulfur oil (fuel sulfur content > 0.90% by weight) as a fuel unless the Permittee demonstrates to the satisfaction of the Control Officer that sufficient quantities of low sulfur oil are not available for use by the source and that it has adequate facilities and contingency plans to insure that the sulfur dioxide ambient air quality standards set forth in 17.08.020 will not be violated. [PCC 17.16.340.H]

 [Locally Enforceable Condition]

b. The Permittee shall only burn the following as fuel in UNITS IGT1 and IGT2:

 [PCC 17.12.190]

 i. Natural gas;

 ii. Fuel oil: #2 Distillate; or

 iii. Co-firing natural gas with Fuel oil #2 Distillate.

c. The Permittee shall only burn diesel as fuel in UNITS IGT1A and IGT2A (stationary turbine starter engines). [PCC 17.12.190]

C. Auxiliary Boiler

1. Particulate Matter Standard

 [PCC 17.16.165.C]

 [Locally Enforceable Condition]

 The Permittee shall not cause, allow or permit the emission of particulate matter, caused by the combustion of fuel from the stack of

 \[E = 1.02Q^{0.769} \]

 where:

 \(E \) = the maximum allowable particulate emissions rate in pounds-mass per hour.
 \(Q \) = the heat input in million Btu per hour.
2. Sulfur Dioxide Standard

 The Permittee shall not cause, allow, or permit the emission of more than 1.0 pounds of sulfur dioxide per million Btu heat input when firing liquid fuel.

3. Fuel Limitations

 a. The Permittee shall not use high sulfur oil (fuel sulfur content > 0.90% by weight) as a fuel unless the Permittee demonstrates to the satisfaction of the Control Officer that sufficient quantities of low sulfur oil are not available for use by the source and that it has adequate facilities and contingency plans to insure that the sulfur dioxide ambient air quality standards set forth in 17.08.020 will not be violated.

 b. Permittee shall only burn the following as fuel in the auxiliary boiler:

 i. Natural gas;
 ii. Fuel oil #2 Distillate; or
 iii. Co-firing Natural gas with Fuel oil #2 Distillate.

D. Cooling Towers

1. Particulate Matter Standard

 The Permittee shall not cause or allow particulate emissions from the cooling towers to exceed:

 \[E = 17.31P^{0.16} \]

 where:

 \[E = \text{the maximum allowable particulate emissions rate in pounds-mass per hour.} \]
 \[P = \text{the process rate in tons-mass per hour.} \]

2. Odor Limiting Standard

 The Permittee shall not emit gaseous or odorous materials from equipment, operations, or premises in such quantities or concentrations to cause air pollution.

3. Where a stack, vent, or other outlet is at such a level that fumes, gas mist, odor, smoke, vapor or any combination thereof constituting air pollution is discharged to adjoining property, the Control Officer may require the installation of abatement equipment or the alteration of such stack, vent, or other outlet by the Permittee thereof to a degree that will adequately dilute, reduce, or eliminate the discharge of air pollution to adjoining property.

4. The Permittee shall not used chromium-based water treatment chemicals in the cooling towers.
E. Coal Preparation Plant (CPP)

[Locally Enforceable Conditions]

1. Particulate Matter Standards

The Permittee shall not cause, allow or permit the discharge of particulate matter into the atmosphere in any one hour from any existing coal preparation plant in total quantities in excess of the amounts calculated by one of the following equations set forth:

a. For process sources having a process weight rate of 60,000 pounds per hour (30 tons per hour) or less, the maximum allowable emissions shall be determined by the following equation:

\[E = 3.59P^{0.62} \]

where:

- \(E \) = the maximum allowable particulate emissions rate in pounds-mass per hour.
- \(P \) = the process weight in tons-mass per hour.

b. For process sources having a process weight rate greater than 60,000 pounds per hour (30 tons per hour), the maximum allowable emissions shall be determined by the following equation:

\[E = 17.31P^{0.16} \]

"E" and "P" are defined as indicated in II.E.1.a. of Part B.

c. The total process weight from all similar units employing a similar type process shall be used in determining the maximum allowable emission of particulate matter.

[PCC 17.16.310.B]

2. The Permittee shall not cause, suffer, allow, or permit crushing, screening, handling, transporting, or conveying of materials or other operations likely to result in significant amounts of airborne dust without taking reasonable precautions, such as the use of spray bars, wetting agents, dust suppressants, covering the load, and hoods to prevent excessive amounts of particulate matter from becoming airborne.

[PCC 17.16.100.A & PCC 17.16.310.E]

3. The Permittee shall not cause, suffer, allow, or permit organic or inorganic dust producing material to be stacked, piled or otherwise stored without taking reasonable precautions such as chemical stabilization, wetting, or covering to prevent excessive amounts of particulate matter from becoming airborne.

[PCC 17.16.110.A & PCC 17.16.310.E]

4. Stacking and reclaiming machinery utilized at storage piles shall be operated at all times with a minimum fall of material and in such manner, or with the use of spray bars and wetting agents, as to minimize and control to ensure compliance with PCC 17.16.050.

[PCC 17.16.110.B & PCC 17.16.310.E]

5. The Permittee shall employ one or more of the following reasonable precautions to prevent excessive amounts of particulate matter from becoming airborne:

a. Use spray bars, hoods, wetting agents, dust suppressants, or cover when crushing, handling, or conveying material that is likely to give rise to airborne dust;

[PCC 17.16.100]
b. Adequately cover, or use wetting agents, chemical stabilization, or dust suppressants when stacking, piling, or otherwise storing organic or inorganic dust producing material; [PCC 17.16.110.A]

c. Operate stacking and reclaiming machinery utilized at storage piles at all times with a minimum fall of material and with the use of spray bars and wetting agents; [PCC 17.16.110.B]

d. The emergency coal storage pile is exempt from the requirements listed above (Part B.II.E.5.a through c of this Part).

F. Fly-Ash Handling Systems (FAHS) [Locally Enforceable Conditions]

1. Particulate Matter Standards [PCC 17.16.430.A.1]

The Permittee shall not cause or permit the discharge of particulate matter into the atmosphere in any one hour from FAHS in total quantities in excess of the amounts calculated by one of the following equations set forth:

a. For process sources having a process weight rate of 60,000 pounds per hour (30 tons per hour) or less, the maximum allowable emissions shall be determined by the following equation:

\[E = 3.59P^{0.62} \]

where:

- \(E \) = the maximum allowable particulate emissions rate in pounds-mass per hour.
- \(P \) = the process weight in tons-mass per hour.

b. For process weight rates greater than 60,000 pounds per hour (30 tons per hour), the maximum allowable emissions shall be determined by the following equation:

\[E = 17.31P^{0.16} \]

"E" and "P" are defined as indicated in II.F.1.a of Part B.

c. The total process weight from all similar units employing a similar type process shall be used in determining the maximum allowable emission of particulate matter. [PCC 17.16.430.B]

2. The Permittee shall not cause, suffer, allow, or permit crushing, screening, handling, transporting, or conveying of materials or other operations likely to result in significant amounts of airborne dust without taking reasonable precautions, such as the use of spray bars, wetting agents, dust suppressants, covering the load, and hoods to prevent excessive amounts of particulate matter from becoming airborne. [PCC 17.16.100.A & PCC 17.16.310.E]

3. The Permittee shall not cause, suffer, allow, or permit organic or inorganic dust producing material to be stacked, piled or otherwise stored without taking reasonable precautions such as chemical stabilization, wetting, or covering to prevent excessive amounts of particulate matter from becoming airborne. [PCC 17.16.110.A & PCC 17.16.310.E]
4. Stacking and reclaiming machinery utilized at storage piles shall be operated at all times with a minimum fall of material and in such manner, or with the use of spray bars and wetting agents, as to minimize and control to ensure compliance with PCC 17.16.050.

[PCC 17.16.110.B & PCC 17.16.310.E]

5. The Permittee shall employ one or more of the following reasonable precautions to prevent excessive amounts of particulate matter from becoming airborne:

a. Use spray bars, hoods, wetting agents, dust suppressants, or cover when crushing, handling, or conveying material that is likely to give rise to airborne dust; [PCC 17.16.100]

b. Adequately cover, or use wetting agents, chemical stabilization, or dust suppressants when stacking, piling, or otherwise storing organic or inorganic dust producing material; [PCC 17.16.110.A]

c. Operate stacking and reclaiming machinery utilized at storage piles at all times with a minimum fall of material and with the use of spray bars and wetting agents;

G. Open Areas, Roadways, & Streets

1. The Permittee shall not cause, suffer, allow, or permit a building or its appurtenances, or a building site, or a driveway, or a parking area, or a vacant lot or other open area to be constructed, used, altered, repaired, demolished, cleared, or leveled, or the earth to be moved or excavated, without taking reasonable precautions to limit excessive amounts of particulate matter from becoming airborne. Dust and other types of air contaminants shall be kept to a minimum by good modern practices such as using an approved dust suppressant or adhesive soil stabilizer, paving, covering, landscaping, continuous wetting, detouring, barring access, or other acceptable means. [PCC 17.16.080.A & SIP 318.A]

2. The Permittee shall not leave any vacant lot, building site, parking area, or other open area in such a state after construction, alteration, clearing, leveling, or excavation that naturally induced wind blowing over the area causes a violation the opacity standards in II.H.1 of this Part. Dust and other types of air contaminants shall be kept to a minimum by good modern practices such as landscaping, covering with gravel or vegetation, paving, or applying equivalently effective controls. [PCC 17.16.080.B & SIP 318.B]

3. No vacant lot, parking area, sales lot, or other open urban area shall be used by motor vehicles in such a manner that visible dust emissions induced by vehicular traffic on the area cause a violation of the opacity standards in II.H.1 of Part B. [PCC 17.16.080.C & SIP 318.C]

4. The Permittee shall not cause, suffer, allow or permit the use, repair, construction or reconstruction of a roadway or alley without taking reasonable precautions to prevent excessive amounts of particulate matter from becoming airborne. Dust and other particulates shall be kept to a minimum by employing temporary paving, dust suppressants, wetting down, detouring or by other reasonable means. [PCC 17.16.090.A]

5. The surfacing of roadways with asbestos tailings is prohibited. [PCC 17.16.090.F & SIP 315]

H. All Operations

1. Opacity Standards
a. Opacity emissions from non-point sources shall not exceed 20 percent as measured in accordance with the Arizona Testing manual, and EPA Reference Method 9.

PCC 17.16.050.B [Locally Enforceable Condition]

b. Except as provided elsewhere in this Part B, the Permittee shall not cause, allow, or permit to be emitted into the atmosphere any plume or effluent the opacity of which exceeds 20 percent, as measured in accordance with EPA Reference Method 9 in 40 CFR, Appendix A.

PCC 17.16.130.B.3 [Locally Enforceable Condition]

2. Definition of Heat Input

For the purposes of this section (II.A through II. C of this Part) the heat input shall be the aggregate heat content of all fuels whose products of combustion pass through a stack or other outlet. The heat content of solid fuel shall be determined in accordance with PCC 17.12.045.C.

3. Odor Limiting Standard

The Permittee shall not emit gaseous or odorous materials from equipment, operations or premises under his control in such quantities or concentrations as to cause air pollution.

PCC 17.16.030 [Locally Enforceable Condition]

4. Visible Emissions

The Permittee shall not cause or permit the airborne diffusion of visible emissions, including fugitive dust, beyond the property boundary line within which the emissions become airborne. In actual practice, the airborne diffusion of visible emissions across property lines shall be prevented by appropriately controlling the emissions at the point of discharge, or ceasing entirely the activity or operation which is causing or contributing to the emissions. This condition shall not apply when wind speeds exceed twenty-five miles per hour (as estimated by an enforcement officer using the Beaufort Scale of Wind-Speed Equivalents, or as recorded by the National Weather Service). This exception does not apply if control measures have not been taken or were not commensurate with the size or scope of the emission source.

PCC 17.16.050.D & SIP 343

III. AIR POLLUTION CONTROLS

A. Fossil Fuel Fired Steam Generators – UNIT I4

The Permittee shall install, maintain, and operate a baghouse on UNIT I4 to capture particulate emissions resulting from combustion of coal fuel. The baghouse shall be operated at all times when UNIT I4 is firing coal (exclusively or in combination) and when transitioning to or from firing coal fuel (exclusively or in combination). Air pollution control equipment shall be operated in a manner consistent with good modern practices for minimizing emissions.

[Installation Permit #1156, Condition 8] [Material Permit Condition]

B. Coal Preparation Plant

1. Spray bars shall be used in conjunction with other air pollution control equipment in the coal handling/storage systems to prevent fugitive dust.

[Installation Permit #1156, Condition 7]
2. At all times when the equipment in the Table 1 is in operation, the Permittee shall maintain and operate the associated air pollution control equipment in accordance with good modern practices for minimizing emissions: [Material Permit Condition]

Table 1

<table>
<thead>
<tr>
<th>Equipment Description</th>
<th>Pollution Control Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotary Car Dumper</td>
<td>Enclosure, Spray Bars & Dust Collector</td>
</tr>
<tr>
<td>Live Coal Storage Facility</td>
<td>Enclosure & Dust Collector</td>
</tr>
<tr>
<td>Crusher Facility</td>
<td>Enclosure & Dust Collector</td>
</tr>
<tr>
<td>Tower 4</td>
<td>Enclosure & Dust Collector</td>
</tr>
<tr>
<td>As Received Sampler</td>
<td>Enclosure</td>
</tr>
<tr>
<td>Emergency Storage Pile</td>
<td>Telescopic Chute</td>
</tr>
<tr>
<td>Conveyors C2, C4, C5, C6, C7A, C7B</td>
<td>Weather Covers</td>
</tr>
</tbody>
</table>

C. Fly-Ash Handling Systems

1. Spray bars shall be used in conjunction with other air pollution control equipment in the flyash handling/storage systems to prevent fugitive dust. [Installation Permit #1156, Condition 7]

2. At all times when the equipment in the following table is in operation, the Permittee shall maintain and operate the associated air pollution control equipment in accordance with good modern practices for minimizing emissions: [Material Permit Condition]

Table B

<table>
<thead>
<tr>
<th>Equipment Description</th>
<th>Pollution Control Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flyash Silo A</td>
<td>Dust Collector</td>
</tr>
<tr>
<td>Flyash Silo A Vent</td>
<td>Dust Collector</td>
</tr>
<tr>
<td>Flyash Silo B</td>
<td>Dust Collector</td>
</tr>
<tr>
<td>Flyash Silo B Vent</td>
<td>Dust Collector</td>
</tr>
<tr>
<td>Flyash Storage Tank #4</td>
<td>Dust Collector</td>
</tr>
</tbody>
</table>

3. The loading sleeve on the flyash hopper shall incorporate a cut-off valve. Flyash shall be wetted prior to any handling in an open area. The fly ash handling area and haul road shall be paved. [Installation Permit #1156, Condition 10][Material Permit Condition]

4. The flyash shall be loaded into enclosed hopper trucks through a closed gravity feed system and the outer sleeve of the dual sleeve system shall seal with the loading port of the truck and it shall be vented back to the hopper baghouse. [Installation Permit #1156, Condition 11][Material Permit Condition]

D. Additional Pollution Control Equipment
1. The Control Officer reserves the right to require any additional air pollution control equipment as deemed necessary for UNIT I4, the Coal Preparation Plant and Fly-Ash Handling Systems. [Installation Permit #1156, Condition 13]

2. The requirement for any additional air pollution control equipment shall be requested by the Control Officer through a permit reopening pursuant to III of Part A. [PCC 17.12.180.A.15]

IV. MONITORING REQUIREMENTS [PCC 17.12.180.A.3]

A. Fossil Fuel Fired Steam Generators

1. Visible Emissions

 a. UNITS I1, I2, & I3

 i. If liquid fuel is combusted in the unit continuously for a time period greater than 48 hours but less than 168 hours, (equal to one week), at least one opacity reading will be observed at the exit of the unit’s stack.

 ii. When continuously firing liquid fuel for a time period greater than 168 hours, the Permittee shall conduct at least one opacity reading during each 168-hour period at the exit of the unit’s stack by an employee certified in Method 9.

 iii. All opacity readings shall be observed in accordance with EPA Reference Method 9. The Permittee shall log in ink or in an unchangeable electronic format and maintain a record of the opacity readings from above and the number of hours fuel oil is burned continuously.

 b. UNIT I4

 i. The Permittee shall install, maintain, calibrate, and operate a continuous opacity monitoring system (COMS). When the Permittee is changing fuel to natural gas, the COMS shall be operated during the transition period, and deactivated only after the opacity readings have stabilized to levels associated with normal natural gas combustion. [Installation Permit #1156, Condition #6][Material Permit Condition]

 ii. The COMS shall meet the following requirements:

 (1) Apparatus

 (2) Installation Specifications

 (3) Design and Performance Specifications

 (4) Design Specifications Verification Procedure

 (5) Performance Specifications Verification Procedure
(6) Equations

(B) Calibration Checks

The Permittee shall record the zero and span drift in accordance with the method prescribed by the manufacturer's recommended zero and span check at least once daily unless the manufacturer has recommended adjustments at shorter intervals, in which case such recommendations shall be followed.

(1) Zero and Span Drift Adjustments

(a) Permittee shall adjust the zero or span whenever the 24-hour zero drift or 24-hour calibration drift limits of 2% opacity are exceeded.

(b) The system shall allow for the amount of excess zero and span drift measured at the 24-hour interval checks to be recorded and quantified.

(c) The optical surfaces exposed to the effluent gases shall be cleaned prior to performing the zero and span drift adjustments except that for systems using automatic zero adjustments.

(d) The optical surfaces shall be cleaned when the cumulative automatic zero compensation exceeds 4% opacity.

(2) System Checks

Each analyzer shall include a calibration system for simulating a zero opacity (or no greater than 10%) condition and an upscale opacity condition for the purposes of performing periodic checks of the transmissometer calibration while on an operating stack or duct. This calibration will provide, as a minimum, a system check of the analyzer internal optics and all electronic circuitry including the lamp and photodetector assembly.

(3) Minimum Frequency of Operation

Except during periods of system breakdowns, repairs, calibration checks, and zero and span adjustments, the COMS shall be in continuous operation and shall complete a minimum of one cycle of sampling and analyzing for each successive 15-second period and one cycle of data recording for each successive 6-minute period.

[PCC 17.12.060.E.2]

(4) Data Reduction and Missing Data

(a) Permittee shall reduce all data from the COMS to 6-minute averages. Six-minute opacity averages shall be calculated from 24 or more data points equally spaced over each 6-minute period.
(b) Data recorded during periods of system breakdowns, repairs, calibration checks, and zero and span adjustments shall not be included in the data averages computed under the previous paragraph. An arithmetic or integrated average of all data may be used.

2. Particulate Matter – Compliance Assurance Monitoring for UNIT I4 (CAM)

a. Indicator, Measurement Approach and Data Representativeness

i. Visible Emissions Opacity

When firing coal and/or liquid fuel the Permittee shall maintain and continuously operate a Continuous Opacity Monitoring Systems (COMS) to measure visible emissions on the stack (Opacity) which is indicative of operation of the UNIT I4 fabric filter in a manner necessary to comply with particulate matter emission standards. [40 CFR 64.6(c)(1) & Installation Permit #1156, Condition #6]

[Material Permit Condition]

ii. Baghouse Condition

The Permittee shall conduct: [40 CFR 64.6(c)(1)]

[Material Permit Condition]

(A) Sampling and analysis of representative bag samples once per year before the anniversary date of the issuance of the permit. The analyses of representative bag samples will be used as a factor in determining when bag replacement is to be scheduled.

(B) An inspection and maintenance program, to be performed during a scheduled major outage that includes an internal visual inspection of the entire baghouse including bag compartments for signs of bag failure. Any known/discovered broken bags will be either replaced or capped off until ready to be replaced. Compartments identified during the inspection with one or more broken bags, that have not been capped off or replaced, will be isolated and only placed back into service when the broken bags have been replaced.

b. Indicator range

i. Visible Emissions Opacity

(A) An average opacity measurement of 10 percent or greater in any 3-hour rolling average period, except during startup, shutdown and malfunction shall constitute an excursion. [40 CFR 64.3(a)(2)]

(B) Each three-hour rolling average opacity, except during startup, shutdown and malfunction during which a fabric filter parameter alarm is activated shall also constitute an excursion for the purposes of responding to and reporting excursions under 40 CFR 64.7. [40 CFR 64.6(c)(2)]

ii. Baghouse Condition
Failure to sample and analyze the bags’ conditions as described in IV.A.2.a.ii.(a) of Part B shall constitute an excursion.

c. Quality Assurance/ Quality Control (QA/QC) Practices

i. Visible Emissions Opacity

ii. Baghouse Condition

The Permittee shall ensure that experienced personnel perform conduct the inspection and maintenance program.

d. Data Collection Procedure & Monitoring Frequency

i. Visible Emissions Opacity

(A) The Permittee shall conduct all monitoring in continuous operation with data recorded as 6-minute averages (or shall collect data at all required intervals) at all times that the pollutant specific emission unit is operating. Except for, as applicable, monitoring malfunctions, associated repairs, and required quality assurance or control activities (including, as applicable, calibration checks and required zero and span adjustments). Data recorded during monitoring malfunctions, associated repairs, and required quality assurance or control activities shall not be used, including data averages and calculations, or fulfilling a minimum data availability requirement, if applicable. [40 CFR 64.7(c)]

(B) Averaging Period

The Permittee shall have a three-hour rolling average period of visible emissions. The three-hour average opacity block parameter shall be equipped with an alarm. [40 CFR 64.6(c)(1)]

ii. Baghouse Condition

The monitoring frequency of the baghouse may vary. In addition the Permittee shall:

(A) Keep the results of the annual representative bag analyses on site.

(B) Record the results of all inspection and maintenance activities and keep them on site.

e. Prior to making any changes to the alarm set point or alarm delay time described in IV.A.2.d.i.(B) of Part B, the Permittee shall submit written notification to the Control Officer. Such notification shall include the proposed new alarm set point or alarm delay.
f. Upon detecting an excursion or exceedance, the owner or operator shall restore operation of the pollutant-specific emissions unit (including the control device and associated capture system) to its normal or usual manner of operation as expeditiously as practicable in accordance with good air pollution control practices for minimizing emissions. The response shall include minimizing the period of any startup, shutdown or malfunction and taking any necessary corrective actions to restore normal operation and prevent the likely recurrence of the cause of an excursion or exceedance (other than those caused by excused startup or shutdown conditions). Such actions may include initial inspection and evaluation, recording that operations returned to normal without operator action (such as through response by a computerized distribution control system), or any necessary follow-up actions to return operation to within the indicator range, designated condition, or below the applicable emission limitation or standard, as applicable. [40 CFR 64.7(d)(1)]

g. Determination of whether the owner or operator has used acceptable procedures in response to an excursion or exceedance will be based on information available, which may include but is not limited to, monitoring results, review of operation and maintenance procedures and records, and inspection of the control device, associated capture system, and the process. [40 CFR 64.7(d)(2)]

h. In addition to the general reporting requirements of this permit, all reports of excursions shall follow the format outlined in 40 CFR 64.9(a)(2) and submitted with the report required in VI.F of Part B. For the purposes of defining “prompt” for excursions, reporting of excursions in this report shall be considered prompt reporting. [40 CFR 64.9(a)]

i. In addition to the general recordkeeping requirements of this permit, all CAM recordkeeping shall follow the format outlined in 40 CFR 64.9(b). [40 CFR 64.9(b)]

3. Sulfur Dioxide and Nitrogen Oxides – UNIT I4

 a. The Permittee shall maintain, calibrate, and operate a continuous emissions monitoring system (CEMS) for measuring the sulfur dioxide emissions, nitrogen oxides emissions, and diluents. When exclusively firing natural gas, the Permittee may use the emission factor of 0.0006 lb/MMBTU to estimate emissions of SO\(_2\) in place of the continuous SO\(_2\) emission monitor. [Installation Permit #1156, Condition #6] [Material Permit Condition]

 b. The CEMS for SO\(_2\), NOx and diluents shall meet the following requirements:

 (A) Installation and measurement location
 (B) Equipment specifications
 (C) Performance specifications
 (D) Data Acquisition and handling systems
 (E) Calibration gas
 (F) Certifications tests and procedures
(G) Calculations

(A) Quality Assurance/Quality Control program
(B) Frequency of testing

c. Permittee shall comply with all the recordkeeping and reporting requirements of 40 CFR Part 75 Subparts F and G respectively.

4. Fuel Limitations - UNIT I4

Coal consumed shall be sampled for moisture, ash, sulfur content, and gross calorific value. A coal analysis shall be performed on each train load and the results of these analyses shall be retained for at least five years following the date of measurement. All sample collection, sample preparation, and analyses performed or caused to be performed shall be conducted according to the most recent ASTM methods. [Installation Permit 1156, Condition #3]

B. Stationary Rotating Machinery (including Stationary Turbines IGT1 & IGT2)

1. Visible Emissions

a. If liquid fuel is burned in a unit continuously for a time period greater than 48 hours but less than 168 hours, at least one six minute opacity reading will be observed at the exit of the unit’s stack.

b. If liquid fuel is burned in a unit continuously for a time period greater than 168 hours, at least one six-minute opacity reading will be observed during each 168-hour period, at the exit of the unit’s stack.

c. All opacity readings will be observed in accordance with EPA Reference Method 9. The Permittee shall log in ink or in an unchangeable electronic format and maintain a record of the opacity readings from above and the number of hours fuel oil is continuously burned.

2. Sulfur Dioxide

For units firing gaseous fuels, the Permittee shall monitor daily, the sulfur content of the fuel being combusted in these machines. This requirement may be complied with by maintaining a vendor-provided copy of that part of the Federal Energy Regulatory Commission (FERC)-approved Tariff agreement that limits transmission of pipeline quality natural gas of sulfur content to less than 0.9 percent by weight. [PCC 17.16.340.1]

3. Hours of Operation

The Permittee shall keep track of the hours of operation, computed as a twelve-month rolling total, until the performance tests specified in VII.A.1 & 3 of this Part are completed.

C. Coal Preparation Plant

[PCC 17.12.180.A.3]
1. A certified Method 9 observer shall conduct a weekly visual survey of visible emissions from the coal preparation plant when it is in operation. This weekly survey shall include observation of all exposed transfer points, enclosed transfer points, the coal storage pile, and the baghouses in the coal handling system. The Permittee shall record the location observed, the name of the observer, date on which the observation was made, and the results of the observation.

2. If the observer sees a plume from an emission point that appears to exceed 20% opacity on an instantaneous basis, the observer shall take a six-minute Method 9 observation of the plume if possible.

3. If the six-minute opacity of the plume exceeds 20%, the Permittee shall do the following:
 a. Adjust or repair the controls or equipment to reduce opacity to below 20%; and
 b. Report it as an excess emission in accordance with XII.A of Part A of this permit.

4. If the six-minute opacity of the plume is less than 20%, the observer shall make a record of the following:
 a. Date and time of the observation; and
 b. The results of the Method 9 observation.

D. Fly-Ash Handling System

 1. A certified Method 9 observer shall conduct a weekly visual survey of visible emissions from the fly-ash handling system when it is in operation. This weekly survey shall include observation of all exposed transfer points, enclosed transfer points and the baghouses in the fly-ash handling system. The Permittee shall record the location observed, the name of the observer, date on which the observation was made, and the results of the observation.

 2. If the observer sees a plume from an emission point that appears to exceed 20% opacity on an instantaneous basis, the observer shall take a six-minute Method 9 observation of the plume if possible.

 3. If the six-minute opacity of the plume exceeds 20%, the Permittee shall do the following:
 a. Adjust or repair the controls or equipment to reduce opacity to below 20%; and
 b. Report it as an excess emission in accordance with XII.A of Part A of this permit.

 4. If the six-minute opacity of the plume is less than 20%, the observer shall make a record of the following:
 a. Date and time of the observation; and
 b. The results of the Method 9 observation.
V. RECORDKEEPING

A. Fossil Fuel Fired Steam Generators

1. Particulate Matter - UNITS I1, I2, & I3

With regard to all liquid fuels, the Permittee shall keep on record, along with the fuel firing rate, the contractual agreement with the liquid fuel vendor indicating the following information concerning the liquid fuel being fired:

a. The heating value; and

b. The ash content.

2. Sulfur Dioxide - UNITS I1, I2, & I3

With regard to liquid fuel, the Permittee shall keep records of fuel supplier certifications including the following information:

a. The name of the fuel oil supplier;

b. The sulfur content of the oil from which the shipment came;

c. The heating content of the oil from which the shipment came;

d. The density of the fuel oil from which the shipment came; and

e. The method used to determine the sulfur content of the oil.

f. Engineering calculations demonstrating compliance with the standard shall be performed each time there is a change in V.A.2.b, c, or d of Part B above. These calculations shall be performed according to the following equation and maintained in a record:

\[
SO_2 = \frac{2.0 \times %S \times D_f \times 1,000,000Btu}{HV \times 1MMBtu}
\]

where:

- \(SO_2\) = emissions of \(SO_2\) in lb/MMBtu
- %S = Percent Sulfur by weight (decimal; i.e. 1% = 0.01)
- \(D_f\) = Density of fuel in lb/gal
- \(HV\) = Heating value of fuel in Btu/gal

3. Fuel Limitation

Except for fuels fired during startup and/or flame stabilization, the Permittee shall log in ink or in an electronic format a record of any change in fuel type including the following information:

a. Type of fuel change; and

b. Date and time of fuel change.

4. Hours of Operation - UNITS I1, I2, & I3

October 29, 2010
Until the performance tests specified in VII.A.1 of Part B are completed, the Permittee shall compute and record the following information in an individual log for each unit within 5 working days of the end of each month:

a. Date and time in which the unit began firing liquid fuel (exclusively or in combination); if liquid fuel combustion began in the previous month, the record shall state the fact;

b. The date and time in which the unit ceased to fire liquid fuel (exclusively or in combination); if liquid fuel combustion continues into the next month the record shall state that fact;

c. The hours of operation during which liquid fuel was fired (exclusively or in combination) in the previous month, including consecutive hours and total hours;

d. The hours of operation during which liquid fuel was fired (exclusively or in combination) in the previous 12-consecutive month period.

B. Stationary Rotating Machinery (including Stationary Turbines IGT1 & IGT2)

1. Particulate Matter

The Permittee shall keep on record, along with the fuel firing rate, the contractual agreement with the liquid fuel vendor indicating the following information concerning the liquid fuel fired in any stationary rotating machinery:

a. The heating value; and

b. The ash content.

The Permittee shall calculate the particulate matter emissions based on the above values for each applicable unit. The Permittee shall perform this calculation each time there is a change related to V.B.1.a or b of Part B in the contractual agreement. These calculations shall be maintained in a record.

2. Sulfur Dioxide

a. For units firing liquid fuels, the Permittee shall keep records of fuel supplier certifications including the following information:

i. The name of the oil supplier;

ii. The sulfur content and the heating content of the oil from which the shipment came; and

iii. The method used to determine the sulfur content of the oil.

iv. Engineering calculations demonstrating compliance with II.B.2 of Part B shall be performed each time there is a change in (ii) above (V.B.2.a.ii of Part B). These calculations shall be maintained in a record.
b. Fuel analysis shall be used to determine the sulfur content of fuel used. The Permittee may also use fuel sulfur content certifications that employ the following test methods: ASTM D 129-91 shall be used to determine the sulfur content of liquid fuels and ASTM D-1702-90, D 1072-80, D 3031-81, D 4084-82, or D 3246-81 shall be used for the sulfur content of gaseous fuels. The applicable ranges of some ASTM methods mentioned above are not adequate to measure the levels of sulfur in some fuel gases. Dilution of samples before analysis (with verification of the dilution ratio) may be used, subject to the approval of the Control Officer.

C. Auxiliary Boiler

Except for fuels fired during startup and/or flame stabilization, the Permittee shall log in ink or in an electronic format a record of any change in fuel type including:

1. Types of fuels changed; and
2. Date and time of fuel change.

D. Coal Preparation Plant

1. Particulate Matter

The Permittee shall maintain and operate all air pollution control equipment in accordance with best modern practices. These practices shall be on file and shall be readily available for inspection by the Control Officer.

2. The Permittee shall maintain records of emissions related maintenance performed on all air pollution control equipment.

E. Fly-Ash Handling Systems

1. Particulate Matter

The Permittee shall maintain and operate all air pollution control equipment in accordance with best modern practices. These practices shall be on file and shall be readily available for inspection by the Control Officer.

2. The Permittee shall maintain records of emissions related maintenance performed on all air pollution control equipment.

F. Open Areas, Roadways, & Streets

The Permittee shall maintain records of dates and types of control measures adopted pursuant to II.F.1, 2, & 4 of Part B.
VI. REPORTING REQUIREMENTS

A. Fossil Fuel Fired Steam Generators

1. CAM Reporting – UNIT I4

For the purposes of permit deviation reporting under Condition XII of Attachment “A,” the Permittee shall include the following information required by 40 CFR part 64, §64.9(a).

 [40 CFR 64.7(d)]

a. Summary information on the number, duration and cause (including unknown causes, if applicable) of excursions or exceedences, as applicable, and the corrective action taken.
 [40 CFR 64.9(a)(2)(i)]

b. Summary information on the number, duration and cause (including unknown causes, if applicable) for monitoring downtime incidents (other than downtime associated with zero and span or other daily calibration checks).
 [40 CFR 64.9(a)(2)(ii)]

2. Fuel Limitation – UNIT I4

The results of the coal analyses required by IV.A.4 shall be compiled in a report to be submitted to the Control Officer within 30 days of the end of each quarter. Samples and/or analysis provided by the coal supplier may be used to satisfy this condition.

 [Installation Permit #1156, Condition #3]

B. Stationary Gas Turbines (Including Stationary Turbines IGT1 & IGT2)

The Permittee shall report any daily period during which the sulfur content of fuels fired in any piece of stationary rotating machinery exceeds 0.8 percent by weight.

 [PCC 17.16.340.J]

C. Auxiliary Boiler - Visible Emissions

The Permittee shall report all 6-minute periods during which the visible emissions exceed 15% opacity.

 [PCC 17.16.165.J]

D. Special Reporting for the Affected Source or Process

The Permittee shall promptly notify and submit written reports to the Control Officer of any instances of excess emissions or deviation from permit requirements. (Refer to XI.A & B of Part A).

E. Quarterly Reports for CEMS/COMS

1. Permittee shall submit a written report of all deviations to PDEQ on January 31st, April 30th, July 31st, and October 31st, covering October through December, January through March, April through June, and July through September, respectively. The reports shall include the following:

a. The magnitude of deviations computed in accordance with PCC 17.12.060, any conversion factor(s) used, and the date and time of commencement and completion of each time period of deviation.
b. Specific identification of each period of deviation that occurs during startups, shutdowns, and malfunctions of the boiler. The nature and cause of any malfunction (if known) and the corrective action taken or preventative measures adopted shall also be reported.

c. The date and time identifying each period during which the continuous monitoring system(s) were inoperative except for zero and span checks and the nature of the system repairs or adjustments. The Control Officer may require proof of continuous monitoring system performance whenever system repairs of adjustments have been made.

\[\text{[PCC 17.12.060.E.4]}\]

d. When no excess emissions have occurred or the continuous monitoring systems have not been inoperative, repaired, or adjusted, such information shall be clearly stated in the report.

\[\text{[PCC 17.16.060.E.5 & Installation Permit #1156, Condition # 6]}\]

2. In addition to the requirements of the above Paragraph (VI.E.1 of this Part), the Permittee shall report all deviations in accordance with XI.B of Part A.

F. Semiannual Summary Reports of Required Monitoring \[\text{[PCC 17.12.180.A.5.a]}\]

The Permittee shall submit a semiannual summary report of all permit deviations (including excursions defined in IV.A.2 (CAM) of Part B and exceedances that have occurred during the reporting period. Semiannual reports shall be due on January 31st and July 31st of each year and shall cover the period July 1st through December 31st and January 1st through June 30th, respectively. The first semiannual report may not cover a six-month period.

G. Compliance Certification Reporting \[\text{[PCC 17.12.220.A.2]}\]

Permittee shall submit an annual compliance certification to the Control Officer pursuant to VII of Part A. Annual compliance certification reports shall be due on February 15th of each year and shall cover the period January 1st through December 31st. The first annual report may not cover a 12-month period.

H. Emissions Inventory Reporting \[\text{[PCC 17.12.320]}\]

Every source subject to a permit requirement shall complete and submit to the Control Officer, when requested, an annual emissions inventory questionnaire pursuant to 17.12.320 of the Pima County Code. (See VI of Part A of this permit).

VII. TESTING REQUIREMENTS \[\text{[PCC 17.12.180.A.3.a & PCC 17.20.010]}\]

For purposes of demonstrating compliance, these test methods shall be used, provided that for the purpose of establishing whether or not the facility has violated or is in violation of any provision of this permit, nothing in this permit shall preclude the use, including the exclusive use, of any credible evidence or information relevant to whether a source would have been in compliance with applicable federal requirements if the appropriate performance or compliance procedures or methods had been performed.
The Permittee shall use the following EPA approved reference test methods to conduct performance tests for the specified pollutants when required:

A. Fossil Fuel Fired Steam Generators

1. Sulfur Dioxide – UNITS I1, I2, & I3

 The Permittee shall perform an annual performance test in accordance with EPA Reference Method 6 or 6C when liquid fuel is fired greater than 1300 hours in a 12 consecutive month period.

2. UNIT I4

 The Permittee shall conduct a performance test for visible emissions, particulate matter, sulfur dioxide, and nitrogen oxides each year within 90 days of the anniversary date of the permit, or a date other than the anniversary date of the permit as submitted by the Permittee and approved by the Control Officer or the Control Officer’s designee. The compliance test shall be conducted while firing coal and at the maximum normal operating load of the unit or other load as approved by the Control Officer. If the unit is not burning coal during the 90 days prior to the applicable date of the compliance test, the test shall be conducted at a later date as soon as practicable after the unit commences the firing of coal, but not later than 30 days after the unit commences the firing of coal. Performance tests shall be conducted in accordance with EPA Reference Method 9 for visible emissions, EPA Reference Method 5 for particulate matter, EPA Reference Method 6 for sulfur dioxide, and EPA Reference Method 7 for nitrogen oxides.

B. Stationary Rotating Machinery (Including Stationary Turbines (IGT1 & IGT2)

1. Sulfur Dioxide

 The Permittee shall perform an annual performance test in accordance with EPA Reference Method 6 or 6C when liquid fuel is fired greater than 1300 hours in a 12 consecutive month period.

2. Carbon Monoxide [A.R.S. 49-422.A.3]

 The Permittee shall perform a performance test to measure the emission rate of carbon monoxide. This performance test shall be conducted after the twelve month rolling total hours of operation exceeds 4500 hours. The performance test shall be performed in accordance with EPA Reference Method 10.

C. All Operations

 Should the Permittee desire to test or be required to test to determine compliance with any applicable standard, the Permittee shall contact the Control Officer for appropriate test methods.
Requirements Specifically Identified as Applicable:

Pima County State Implementation Plan (SIP):

Rule 315 Roads and Streets
Rule 318 Vacant Lots and Open Spaces
Rule 321 Standards and Applicability
Rule 343 Visibility Limiting Standard

Code of Federal Regulations Title 40:

Part 60 Subpart KKKK New Source Performance Standards for Stationary combustion Turbines
Part 60 Subpart GG New Source Performance Standards for Stationary combustion Turbines
Part 60 Appendix B Performance Specifications
Part 64 Compliance Assurance Monitoring
Part 75 Subpart F Conversion Procedures
Part 75 Subpart G Determination of CO Emissions
Part 75 Appendix A Specifications and Test Procedures
Part 75 Appendix B Quality Assurance and Quality Control

ADEQ Consent Order signed February 17, 2009

Pima County Code (PCC) Title 17, Chapter 17.16:

17.16.020 Noncompliance with Applicable Standards
17.16.030 Odor Limiting Standards
17.16.040 Standards and Applicability (Includes NESHAP)
17.16.050 Visibility Limiting Standards
17.16.060 Fugitive Dust Producing Activities
17.16.080 Vacant Lots and Open Spaces
17.16.090 Roads and Streets
17.16.100 Particulate Materials
17.16.110 Storage Piles
17.16.130 Applicability
17.16.160 Standards of Performance for Fossil-Fuel Fired Steam Generators and General Fuel Burning Equipment
17.16.165 Standards of Performance for Fossil-Fuel Fired Industrial and Commercial Equipment
17.16.310 Standards of Performance for Coal Preparation Plants
17.16.340 Standards of Performance for Stationary Rotating Machinery
17.16.430 Standards of Performance for Unclassified Sources

Installation Permit #1156 – October 14, 1981 by Arizona Department of Health Services
ATTACHMENT D: EQUIPMENT LIST

I. Fossil Fuel Fired Steam Generators

<table>
<thead>
<tr>
<th>Equipment ID</th>
<th>Description</th>
<th>Capacity</th>
<th>Serial Number</th>
<th>Make</th>
<th>Date of Manufacture, Installation, or Reconstruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>I1</td>
<td>Steam Electric Generating Unit</td>
<td>81 MW Net</td>
<td>18589</td>
<td>Combustion Engineering</td>
<td>1957</td>
</tr>
<tr>
<td>I2</td>
<td>Steam Electric Generating Unit</td>
<td>80 MW Net</td>
<td>19065</td>
<td>Combustion Engineering</td>
<td>1959</td>
</tr>
<tr>
<td>I3</td>
<td>Steam Electric Generating Unit</td>
<td>104 MW Net</td>
<td>19485</td>
<td>Combustion Engineering</td>
<td>1961</td>
</tr>
<tr>
<td>I4</td>
<td>Steam Electric Generating Unit</td>
<td>Coal: 110 MW Net</td>
<td>75-19487</td>
<td>Foster Wheeler</td>
<td>1964</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gas/Oil: 156 MW Net</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

II. Stationary Rotating Machinery (including Stationary Turbines)

<table>
<thead>
<tr>
<th>Equipment ID</th>
<th>Description</th>
<th>Capacity</th>
<th>Serial Number</th>
<th>Make</th>
<th>Date of Manufacture, Installation, or Reconstruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGT1</td>
<td>Simple cycle gas turbine generating unit</td>
<td>24 MW Net</td>
<td>17A2088-1</td>
<td>Westinghouse</td>
<td>1972</td>
</tr>
<tr>
<td>IGT2</td>
<td>Simple cycle gas turbine generating unit</td>
<td>24.5 MW Net</td>
<td>17A2086-1</td>
<td>Westinghouse</td>
<td>1972</td>
</tr>
<tr>
<td>IGT3</td>
<td>Simple cycle gas turbine generating unit</td>
<td><25 MW Net</td>
<td>To be submitted upon purchase</td>
<td>To be submitted upon purchase</td>
<td>To be submitted upon purchase</td>
</tr>
<tr>
<td>IGT1A</td>
<td>Gas turbine diesel starter engine</td>
<td>635 hp</td>
<td>772267-3</td>
<td>Cummings</td>
<td>1972</td>
</tr>
<tr>
<td>IGT2A</td>
<td>Gas turbine diesel starter engine</td>
<td>635 hp</td>
<td>769853-3</td>
<td>Cummings</td>
<td>1972</td>
</tr>
</tbody>
</table>

III. Auxiliary Boiler

<table>
<thead>
<tr>
<th>Equipment ID</th>
<th>Description</th>
<th>Capacity</th>
<th>Serial Number</th>
<th>Make</th>
<th>Date of Manufacture, Installation, or Reconstruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>IAUX</td>
<td>Auxiliary Boiler</td>
<td>57,000 lb/hr (steam)</td>
<td>23583</td>
<td>Babcock-Wilcox</td>
<td>1972</td>
</tr>
</tbody>
</table>
IV. Cooling Towers

<table>
<thead>
<tr>
<th>Equipment ID</th>
<th>Description</th>
<th>Serial Number</th>
<th>Make</th>
<th>Date of Manufacture, Installation, or Reconstruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>I1E</td>
<td>Steam Unit Cooling Tower</td>
<td>FD90980</td>
<td>Fluor Products</td>
<td>1957</td>
</tr>
<tr>
<td>I2D</td>
<td>Steam Unit Cooling Tower</td>
<td>FD92580</td>
<td>Fluor Products</td>
<td>1959</td>
</tr>
<tr>
<td>I3D</td>
<td>Steam Unit Cooling Tower</td>
<td>663-3-10</td>
<td>Marley Co.</td>
<td>1961</td>
</tr>
<tr>
<td>I4E</td>
<td>Steam Unit Cooling Tower</td>
<td>6645-12-36-3</td>
<td>Marley Co.</td>
<td>1964</td>
</tr>
</tbody>
</table>

V. Air Pollution Controls

<table>
<thead>
<tr>
<th>Equipment ID</th>
<th>Description</th>
<th>Serial/ Model Number</th>
<th>Make</th>
</tr>
</thead>
<tbody>
<tr>
<td>I4BH</td>
<td>Baghouse to Unit I4</td>
<td>Project No. 83-1364, 65, 66</td>
<td>American Air Filter</td>
</tr>
<tr>
<td>A1</td>
<td>Flyash Silo A & B Collector</td>
<td>13-61-18999</td>
<td>Flex-Clean 100 CTBC 98 111G</td>
</tr>
<tr>
<td>A1A</td>
<td>Flyash Silo A & B Vent Collector</td>
<td>13-94-19000</td>
<td>Flex-Clean 100 WRBC-9611</td>
</tr>
<tr>
<td>A3</td>
<td>Flyash Storage Tank #4 Dust Collector</td>
<td>86410H1</td>
<td>Mikropul Corp.</td>
</tr>
</tbody>
</table>

VI. Continuous Emissions/Opacity Monitoring Systems

<table>
<thead>
<tr>
<th>Unit</th>
<th>Pollutant/ Parameter</th>
<th>Method</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>I1</td>
<td>Oxygen</td>
<td>Paramagnetic</td>
<td>0-21%</td>
</tr>
<tr>
<td>I1</td>
<td>NOx</td>
<td>Chemiluminesence</td>
<td>0-400 ppm</td>
</tr>
<tr>
<td>I1</td>
<td>Fuel Flow - Gas</td>
<td>Differential Pressure (DP)</td>
<td>0-9000 hscfh</td>
</tr>
<tr>
<td>I1</td>
<td>Fuel Flow - Oil</td>
<td>Positive Displacement (PDP)</td>
<td>0-50000 lb/hr</td>
</tr>
<tr>
<td>I2</td>
<td>Oxygen</td>
<td>Paramagnetic</td>
<td>0-21%</td>
</tr>
<tr>
<td>I2</td>
<td>NOx</td>
<td>Chemiluminesence</td>
<td>0-400 ppm</td>
</tr>
<tr>
<td>I2</td>
<td>Fuel Flow - Gas</td>
<td>Differential Pressure (DP)</td>
<td>0-9000 hscfh</td>
</tr>
<tr>
<td>I2</td>
<td>Fuel Flow - Oil</td>
<td>Positive Displacement (PDP)</td>
<td>0-50000 lb/hr</td>
</tr>
<tr>
<td>I3</td>
<td>Oxygen</td>
<td>Paramagnetic</td>
<td>0-21%</td>
</tr>
<tr>
<td>I3</td>
<td>NOx</td>
<td>Chemiluminesence</td>
<td>0-400 ppm</td>
</tr>
<tr>
<td>I3</td>
<td>Fuel Flow - Gas</td>
<td>Differential Pressure (DP)</td>
<td>0-12000 hscfh</td>
</tr>
<tr>
<td>I3</td>
<td>Fuel Flow - Oil</td>
<td>Positive Displacement (PDP)</td>
<td>0-75000 lb/hr</td>
</tr>
<tr>
<td>I4</td>
<td>Oxygen</td>
<td>Paramagnetic</td>
<td>0-21%</td>
</tr>
<tr>
<td>I4</td>
<td>NOx</td>
<td>Chemiluminesence</td>
<td>0-400 ppm</td>
</tr>
<tr>
<td>I4</td>
<td>Sulfur Dioxide</td>
<td>U.V. Fluorescence</td>
<td>0-700 ppm</td>
</tr>
<tr>
<td>I4</td>
<td>Mass Flow</td>
<td>Constant temperature anemometer thermal array</td>
<td>3.29×10^7 scfh</td>
</tr>
<tr>
<td>I4</td>
<td>Opacity</td>
<td>Electro-optical, double pass</td>
<td>0-100%</td>
</tr>
</tbody>
</table>
VII. Emergency Generators

<table>
<thead>
<tr>
<th>Equipment ID</th>
<th>Description</th>
<th>Capacity</th>
<th>Serial Number</th>
<th>Make/ Model</th>
<th>Date of Manufacture</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGEN1</td>
<td>Non-NSPS Emergency Diesel Generator</td>
<td>349 HP (260 kW)</td>
<td>9NR03701</td>
<td>Caterpillar/ 3306</td>
<td>1999</td>
</tr>
<tr>
<td>EGEN2</td>
<td>NSPS Emergency Diesel Generator</td>
<td>636 HP (474 kW)</td>
<td>8CMAF6003ID</td>
<td>Kohler/ 400REOZDD</td>
<td>2008</td>
</tr>
<tr>
<td>Equipment ID</td>
<td>Description</td>
<td>Capacity</td>
<td>Date of Manufacture, Installation, or Reconstruction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>----------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A6</td>
<td>Power Production - Flyash Latrine Vents</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>Rotary Car Dumper Dust Collector</td>
<td>RFC-1178</td>
<td>Carter Day</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td>Live Coal Storage Dust Collector</td>
<td>RFC-1179</td>
<td>Carter Day</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5</td>
<td>Crusher Facility Dust Collector</td>
<td>RFC-1180</td>
<td>Carter Day</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C6</td>
<td>Tower 4 Dust Collector</td>
<td>RFC-1181</td>
<td>Carter Day</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C21</td>
<td>Power Production - Rotary Car Dumper Latrine Vent/Septic System</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C22</td>
<td>Power Production - Crusher Tower Latrine Vent/Septic System</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM1</td>
<td>Power Production - North 12,000 gal 93% Sulfuric Acid Storage Tank</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM2</td>
<td>Power Production - North 12,000 gal 50% Liquid NaOH Storage Tank</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM3</td>
<td>Power Production - North Water Treatment Chemical Storage Bins/Barrels</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM4</td>
<td>Power Production - North Cooling Tower Treatment Room</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM5</td>
<td>Power Production - North Boiler Water Treatment Area</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM6</td>
<td>Power Production - South 12,000 gal 93% Sulfuric Acid Storage Tank</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM7</td>
<td>Power Production - South Water Treatment Chemical Storage Bins/Barrels</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM8</td>
<td>Power Production - South Cooling Tower Treatment Room</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM9</td>
<td>Power Production - South Boiler Water Treatment Area</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM11</td>
<td>Power Production - Environmental Laboratory Latrine Vent/Septic System</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM12</td>
<td>Power Production - Environmental Laboratory Fume Hood</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM13</td>
<td>Power Production - Water Laboratory Fume Hood (2)</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM14</td>
<td>Power Production - Environmental Laboratory Heater</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM15</td>
<td>Power Production - Boiler Feedwater Storage Tanks (6)</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FH1</td>
<td>Fuel Oil Storage Tank #1 – Vertical Fixed Roof AST</td>
<td>524,072 gal</td>
<td>1957</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FH2</td>
<td>Fuel Oil Storage Tank #2 – Vertical Fixed Roof AST</td>
<td>524,072 gal</td>
<td>1958</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FH3</td>
<td>Fuel Oil Storage Tank #3 – Vertical Fixed Cone Roof AST</td>
<td>756,084 gal</td>
<td>1961</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FH5</td>
<td>Water Storage Tank #5 – Vertical Fixed Roof AST</td>
<td>3,034,858 gal</td>
<td>1971</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FH6</td>
<td>Fuel Oil Storage Tank #6 – Vertical Fixed Roof AST</td>
<td>3,034,858 gal</td>
<td>1971</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FH7</td>
<td>Fuel Oil Storage Tank #7 – Vertical Fixed Roof AST</td>
<td>3,034,858 gal</td>
<td>1971</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FH8</td>
<td>Fuel Oil Storage Tank #8 – Vertical Fixed Roof AST</td>
<td>10,612,951 gal</td>
<td>1972</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FH9</td>
<td>Fuel Oil Storage Tank #9 – Vertical Fixed Roof AST</td>
<td>10,612,951 gal</td>
<td>1972</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FH9</td>
<td>Power Production - Condensate Return Collection Sump Vents</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FH10</td>
<td>Fuel Oil Storage Tank #10 – Vertical Fixed Roof AST</td>
<td>10,612,951 gal</td>
<td>1972</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FH11</td>
<td>Fuel Oil Storage Tank #11 – Vertical Fixed Roof AST</td>
<td>3,034,858 gal</td>
<td>1972</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FH12</td>
<td>Fuel Oil Storage Tank #12 – Vertical Fixed Roof AST</td>
<td>3,034,858 gal</td>
<td>1972</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FH13</td>
<td>Fuel Oil Storage Tank #13 – Vertical Fixed Roof AST</td>
<td>3,034,858 gal</td>
<td>1972</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FH14</td>
<td>Power Production - Condensate Return Collection Sump Vents</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equipment ID</td>
<td>Description</td>
<td>Capacity</td>
<td>Date of Manufacture, Installation, or Reconstruction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>----------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FH15</td>
<td>Power Production - Fuel Oil Unloading/Transfer/Pumping and Piping Facilities</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FH16</td>
<td>Power Production - Waste Oil Drums</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GS9</td>
<td>General Shop - Furnace 75 kBTU</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GS10</td>
<td>General Shop - Latrine Vents</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GS11</td>
<td>General Shop Paint Booth</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I5</td>
<td>Power Production - Power Block Latrine Vents</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I6</td>
<td>Power Production - Engineering Building Latrine Vents</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I7</td>
<td>Power Production - Power Block Used Oil Storage Drums</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I8</td>
<td>Power Production - Power Block Battery Rooms</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I9</td>
<td>Power Production - Common Facilities Battery Room</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I11</td>
<td>Power Production - Mechanical Maintenance Flammable Storage cabinets</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I12</td>
<td>Power Production - Switchyard Circuit Breakers/Transformers</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I13</td>
<td>Lube Oil/Paint Storage Room</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I14</td>
<td>Power Production - Maintenance Shop Welding Activities/Vents/ Solvent Tanks</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I15</td>
<td>Electrical Shop Solvent Tank</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I172</td>
<td>Power Production - #5 Fire/Dust Control Water Storage Tank 3,000,000 gal</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I173</td>
<td>Power Production - Service Water Pressure/Storage Tank 150,000 gallons</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I16-21, WH1-2, GS1-8, TRAN4-12</td>
<td>Miscellaneous hot water and space heaters</td>
<td>Misc.</td>
<td>Misc.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I1A</td>
<td>Power Production - Unit #1 Boiler Blowdown Flashtank</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I1B</td>
<td>Turbine lube oil vapor extractor</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I1C</td>
<td>Generator bearing drain vapor extractor</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I1D</td>
<td>Generator bearing drain vacuum pump</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I1E</td>
<td>Power Production - North Turbine Lube Oil Storage Tank</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I1F</td>
<td>Power Production - Unit #1 Fuel Gas Piping</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I1G</td>
<td>Power Production - Unit #1 Fuel Gas Vents</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I1H</td>
<td>Power Production - Unit #1 Boiler Safety Relief Valve Vents</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I1I</td>
<td>Power Production - Unit #1 Steam/Drain Vents</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I1K</td>
<td>Power Production - Unit #1 Main Transformer</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I1L</td>
<td>Power Production - Unit #1 Auxiliary Transformer</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I2A</td>
<td>Power Production - Unit #2 Boiler Blowdown Flashtank</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I2B</td>
<td>Turbine lube oil vapor extractor</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I2C</td>
<td>Generator bearing drain vapor extractor</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I2E</td>
<td>Power Production - Unit #2 Fuel Gas Piping</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I2F</td>
<td>Power Production - Unit #2 Fuel Gas Vents</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I2G</td>
<td>Power Production - Unit #2 Boiler Safety Relief Valve Vents</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I2H</td>
<td>Power Production - Unit #2 Steam/Drain Vents</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I2I</td>
<td>Power Production - Unit #2 Main Transformer</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I2J</td>
<td>Power Production - Unit #2 Auxiliary Transformer</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I3A</td>
<td>Power Production - Unit #3 Boiler Blowdown Flashtank</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I3B</td>
<td>Turbine lube oil vapor extractor</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I3C</td>
<td>Generator bearing drain vapor extractor</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I3E</td>
<td>Power Production - South Turbine Lube Oil Storage Tank</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I3F</td>
<td>Power Production - Unit #3 Fuel Gas Piping</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I3G</td>
<td>Power Production - Unit #3 Fuel Gas Vents</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equipment ID</td>
<td>Description</td>
<td>Capacity</td>
<td>Date of Manufacture, Installation, or Reconstruction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>----------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I3H</td>
<td>Power Production - Unit #3 Boiler Safety Relief Valve Vents</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I3I</td>
<td>Power Production - Unit #3 Steam/Drain Vents</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I3J</td>
<td>Power Production - Unit #3 Main Transformer</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I3K</td>
<td>Power Production - Unit #3 Auxiliary Transformer</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I4A</td>
<td>Power Production - Unit #4 Boiler Blowdown Flashtank</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I4B</td>
<td>Turbine lube oil vapor extractor</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I4C</td>
<td>Generator bearing drain vapor extractor – 6508-G-13</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I4D</td>
<td>Generator bearing drain vacuum pump</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I4F</td>
<td>Power Production - Unit #4 Fuel Gas Piping</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I4G</td>
<td>Power Production - Unit #4 Fuel Gas Vents</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I4H</td>
<td>Power Production - Unit #4 Boiler Safety Relief Valve Vents</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I4I</td>
<td>Power Production - Unit #4 Steam/Drain Vents</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I4J</td>
<td>Power Production - Unit #4 Main Transformer</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I4K</td>
<td>Power Production - Unit #4 Auxiliary Transformer</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IGT1B</td>
<td>Turbine lube oil vapor extractor</td>
<td>0.5 hp/1A/230V</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IGT2B</td>
<td>Turbine lube oil vapor extractor</td>
<td>0.5 hp/1A/230V</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OH1</td>
<td>Operating Headquarters - HVAC Cooling Tower</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OH1</td>
<td>ERTF Paint Booth</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OH4</td>
<td>Operating Headquarters - Latrine Vents</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OH5</td>
<td>Operating Headquarters - Training Center Latrine Vents</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OH6</td>
<td>Operating Headquarters - Trailer Latrine Vents</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OH73</td>
<td>Operating Headquarters Tool Room Solvent Tank</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS1</td>
<td>Servicenter - HVAC Cooling Tower</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS2</td>
<td>Servicenter - Reproduction Equipment</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS4</td>
<td>Servicenter - Latrine Vents</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRAN1</td>
<td>Transportation - New/Used Lubricating Oil Storage</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRAN13</td>
<td>Transportation - Latrine Vents</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRAN2</td>
<td>Transportation - Underground Diesel Storage Tank</td>
<td>15,000 gal</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tank 19</td>
<td>Transportation – Aboveground Diesel Storage Tank</td>
<td>10,000 gal</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tank 1</td>
<td>Transportation – Underground Gasoline Storage Tank</td>
<td>15,000 gal</td>
<td>1989</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRAN16</td>
<td>Transportation Steam Cleaner</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WH4</td>
<td>WH4 Warehouse - Latrine Vents</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WW1</td>
<td>Power Production - North Collection Sump-Boiler Blowdown</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WW2</td>
<td>Power Production - South Collection Sump (2) - Rain Runoff, Ash/Coal Area Washdown</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WW3</td>
<td>Power Production - Bottom Ash Runoff Collection Sump</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WW4</td>
<td>Power Production - Plant Waste Basin-Boiler BlowdownDemineralizer Regenerant</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WW5</td>
<td>Power Production - Coal Pile Runof Basin- Rain Runoff, Ash/Coal Area Washdown</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WW6</td>
<td>Power Production - Evaporation Basin (3) - Treated Wastewater from Plant Waste/Coal Pile Runoff Basin</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WW7</td>
<td>Power Production - Waste Water Treatment Latrine Vent/Septic System</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WW8</td>
<td>WW8 Power Production - Waste Water Treatment 5,000 gal 93% Sulfuric Acid Tank</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WW9</td>
<td>Power Production - Waste Water Treatment 5,000 gal 50% Liquid NaOH Tank</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WW10</td>
<td>Power Production - Waste Water Treatment Clarifier - Wastewater 140,000 gal</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equipment ID</td>
<td>Description</td>
<td>Capacity</td>
<td>Date of Manufacture, Installation, or Reconstruction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>----------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WW11</td>
<td>Power Production - Waste Water Treatment Scum Tank- Clarifier Scum for recycle 1170 gal</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WW12</td>
<td>Power Production - Waste Water Treatment pH Adjustment Tank- Pretreated Wastewater 6768 gal</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WW13</td>
<td>Power Production - Waste Water Treatment pH Adjustment Tank- Treated Wastewater 5000 gal</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WW14</td>
<td>Power Production - Waste Water Treatment Chemical Mix Tank (2) - Alum 730 gal</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WW15</td>
<td>Power Production - Waste Water Treatment Chemical Mix Tank (2) - Polymer 148 gal</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N/A</td>
<td>Compact Linear Fresnel Reflector – Solar Steam Generator System</td>
<td>N/A</td>
<td>2011</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
I. STATEMENT OF BASIS

Statutory and Regulatory Authorities: In accordance with Arizona Revised Statutes, Title 49, Chapter 3, Article 2, Section 426.N, and Titles IV and V of the Clean Air Act, the Pima County Department of Environmental Quality issues this Phase II Acid Rain Permit pursuant to Section 17.12.365 of Title 17 of the Pima County Code.

II. SO\textsubscript{2} ALLOWANCE1 ALLOCATIONS AND NO\textsubscript{x} REQUIREMENTS FOR EACH AFFECTED UNIT

A. UNIT I1

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual SO\textsubscript{2} allowances</td>
<td>16 tons</td>
<td>14 tons</td>
</tr>
<tr>
<td>NO\textsubscript{x} Limits:</td>
<td>This unit is not subject to a NO\textsubscript{x} limit under 40 CFR Part 76.</td>
<td></td>
</tr>
</tbody>
</table>

B. UNIT I2

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual SO\textsubscript{2} allowances</td>
<td>28 tons</td>
<td>40 tons</td>
</tr>
<tr>
<td>NO\textsubscript{x} Limits:</td>
<td>This unit is not subject to a NO\textsubscript{x} limit under 40 CFR Part 76.</td>
<td></td>
</tr>
</tbody>
</table>

C. UNIT I3

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual SO\textsubscript{2} allowances</td>
<td>0 tons</td>
<td>2 tons</td>
</tr>
<tr>
<td>NO\textsubscript{x} Limits:</td>
<td>This unit is not subject to a NO\textsubscript{x} limit under 40 CFR Part 76.</td>
<td></td>
</tr>
</tbody>
</table>

D. UNIT I4

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual SO\textsubscript{2} allowances</td>
<td>2853 tons</td>
<td>2805 tons</td>
</tr>
<tr>
<td>NO\textsubscript{x} Limits:</td>
<td>Pursuant to 40 CFR Part 76, the Pima County Department of Environmental Quality approves a NO\textsubscript{x} emission limitation for UNIT I4. This unit’s annual average NO\textsubscript{x} emission rate for each year, determined in accordance with 40 CFR Part 75, shall not exceed the applicable emission limitation, under 40 CFR Part 76.7(a)(2), of 0.46 lb/MMBTU for wall-fired boilers. In addition, this unit shall comply with all other applicable requirements of 40 CFR Part 76, including the duty to reapply for a NO\textsubscript{x} compliance plan and requirements covering excess emissions.</td>
<td></td>
</tr>
</tbody>
</table>

1 As defined under 40 CFR §72.2, “Allowance” means an authorization by the Administrator under the Acid Rain Program to emit up to one ton of sulfur dioxide during or after a specified calendar year.
The number of allowances actually held by an affected source in a unit account may differ from the number allocated by U.S. EPA. Neither of the aforementioned conditions necessitate a revision to the unit SO$_2$ allowance allocations identified in this permit (See 40 CFR 72.84).

III. ACID RAIN PERMIT APPLICATION

The Permittee, and any other owners or operators of the units at this facility, shall comply with the requirements contained in the two attached acid rain permit applications. These applications are:

A. Phase II Permit Application (OMB No. 2060-0258) signed by the Designated Representative on 12/12/95.

B. Phase II NOx Compliance Plan (OMB No. 2060-0258) signed by the Designated Representative on 12/15/97.
ATTACHMENT G: ALTERNATE OPERATING SCENARIO #1

I. APPLICABILITY – 40 CFR 60 Subpart KKKK

This alternate operating scenario #1 shall only apply to the turbine that will be identified as IGT3 upon purchase should the applicability date of IGT3 be subject to 40 CFR 60 Subpart KKKK. TEP-IGS shall notify PDEQ upon purchasing the turbine. The notification shall include all reporting requirements that are identified in this attachment.

II. GENERAL PROVISIONS

The following requirements apply to the operation, maintenance, recordkeeping and testing of Unit IGT3 and its associated monitoring systems in accordance with 40 CFR Part 60, Subpart A – General Provisions. These requirements are in addition to any applicable requirements in the General Provisions in Part A of this permit, unless Attachment G is more stringent.

A. Mailing Address

All requests, reports, applications, submittals, and other communications to the Administrator and Control Officer pursuant to 40 CFR Part 60 shall be submitted in duplicate to the Administrator and Control Officer at the following addresses:

Director, Air Division
U.S. Environmental Protection Agency
75 Hawthorne Street
San Francisco, CA 94105

Director
Pima County Department of Environmental Quality
33 North Stone Avenue, Suite 730
Tucson, AZ 85701

B. Notification and Recordkeeping

1. The Permittee shall furnish the Control Officer written notification as follows:

 a. A notification of the date of construction of Unit IGT3 is commenced postmarked no later than 30 days after such date (date of construction).

 b. A notification of the actual date of initial startup of Unit IGT3 postmarked within 15 days of after such date (date of initial startup).

 c. A notification of any physical or operational change to an existing facility which may increase the emission rate of any air pollutant to which a standard applies, unless that change is specifically exempted under an applicable subpart or in 40 CFR 60.14(e). This notice shall be postmarked 60 days or as soon as practicable before the change is commenced and shall include information describing the precise nature of the change, present and proposed emission control systems, productive capacity of the facility before and after the change, and the expected completion date of the change. The Control Officer may request additional relevant information subsequent to this notice.
d. A notification of the date upon which demonstration of the continuous monitoring system performance commences in accordance with 40 CFR 60.13(c) postmarked not less than 30 days prior to such date. [40 CFR 60.7(a)(5)]

e. A notification of the anticipated date for conducting the opacity observations required by 40 CFR 60.11(e)(1). The notification shall also include, if appropriate, a request for the Administrator to provide a visible emissions reader during a performance test. The notification shall be postmarked not less than 30 days prior to such date. [40 CFR 60.7(a)(6)]

f. A notification that continuous opacity monitoring system data results will be used to determine compliance with the applicable opacity standard during a performance test required by 40 CFR 60.8 in lieu of Method 9 observation data as allowed by 40 CFR 60.11(e)(5). This notification shall be postmarked not less than 30 days prior to the date of the performance test. [40 CFR 60.7(a)(7)]

2. The Permittee shall maintain records of the occurrence and duration of any startup, shutdown, or malfunction in the operation of an affected facility; any malfunction of the air pollution control equipment; or any periods during which a continuous monitoring system or monitoring device is inoperative. [40 CFR 60.7(b)]

3. The Permittee shall submit excess emissions and monitoring systems performance reports and/or summary report form to the Control Officer semi-annually, except when: more frequent reporting is specifically required by an applicable subpart; or the Control Officer, on a case-by-case basis, determines that more frequent reporting is necessary to accurately assess the compliance status of the source. All reports shall be postmarked by the 30th day following the end of each six-month period. Written reports of excess emissions shall include the following information: [40 CFR 60.7(c), 40 CFR 60.4375(a), 40 CFR 60.4395 & PCC 17.12.040.B]

a. The magnitude of excess emissions computed in accordance with 40 CFR 60.13(h), any conversion factor(s) used, and the date and time of commencement and completion of each time period of excess emissions and the process operating time during the reporting period. [40 CFR 60.7(c)(1)]

b. Specific identification of each period of excess emissions that occurs during startups, shutdowns, and malfunctions of the affected facility. The nature and cause of any malfunction (if known), the corrective action taken or preventative measures adopted. [40 CFR 60.7(c)(2)]

c. The date and time identifying each period during which the continuous monitoring system was inoperative except for zero and span checks and the nature of the system repairs or adjustments. [40 CFR 60.7(c)(3)]

d. When no excess emissions have occurred or the continuous monitoring system(s) have not been inoperative, repaired, or adjusted, such information shall be stated in the report. [40 CFR 60.7(c)(4)]

4. The summary report form submitted by the Permittee shall contain the information and be in the format shown in 40 CFR 60.7(d) figure 1 unless otherwise specified by the Administrator. One summary report form shall be submitted for each pollutant monitored at IGT3. [40 CFR 60.7(d)]

a. If the total duration of excess emissions for the reporting period is less than 1 percent of the total operating time for the reporting period and CMS downtime for the reporting October 29, 2010
period is less than 5 percent of the total operating time for the reporting period, only the summary report form shall be submitted and the excess emission report described in II.B.3 of Attachment G need not be submitted unless requested by the Administrator.
[40 CFR 60.7(d)(1)]

b. If the total duration of excess emissions for the reporting period is 1 percent or greater of the total operating time for the reporting period or the total CMS downtime for the reporting period is 5 percent or greater of the total operating time for the reporting period, the summary report form and the excess emission report described in II.B.3 of Attachment G shall both be submitted.
[40 CFR 60.7(d)(2)]

5. The Permittee shall maintain a file of all measurements, including continuous monitoring system, monitoring device, and performance testing measurements; all continuous monitoring system performance evaluations; all continuous monitoring system or monitoring device calibration checks; adjustments and maintenance performed on these systems or devices; and all other information required in a permanent form suitable for inspection. The file shall be retained for at least two years following the date of such measurements, maintenance, reports, and records, except as follows:
[40 CFR 60.7(f)]

a. If the Permittee is required to install a continuous emissions monitoring system (CEMS) where the CEMS installed is automated, and where the calculated data averages do not exclude periods of CEMS breakdown or malfunction. An automated CEMS records and reduces the measured data to the form of the pollutant emission standard through the use of a computerized data acquisition system. In lieu of maintaining a file of all CEMS subhourly measurements as required in II.B.5 of Attachment G, the Permittee shall retain the most recent consecutive three averaging periods of subhourly measurements and a file that contains a hard copy of the data acquisition system algorithm used to reduce the measured data into the reportable form of the standard.
[40 CFR 60.7(f)(1)]

b. If the Permittee is required to install a CEMS where the measured data is manually reduced to obtain the reportable form of the standard, and where the calculated data averages do not exclude periods of CEMS breakdown or malfunction. In lieu of maintaining a file of all CEMS subhourly measurements as required under II.B.5 of Attachment G the Permittee shall retain all subhourly measurements for the most recent reporting period. The subhourly measurements shall be retained for 120 days from the date of the most recent summary or excess emission report submitted to the Administrator.
[40 CFR 60.7(f)(2)]

c. The Administrator or Control Officer, upon notification to the source, may require the Permittee to maintain all measurements as required by II.B.5 of Attachment G, if the Administrator or Control Officer determines these records are required to more accurately assess the compliance status of the affected source.
[40 CFR 60.7(f)(3)]

C. Performance Tests

1. Within 60 days after achieving the maximum production rate at which IGT3 will be operated, but not later than 180 days after initial startup of IGT3 and at such other times as may be required by the Control Officer under section 114 of the Act, the Permittee shall conduct emissions performance test(s) for NOx and SO\textsubscript{2}, and furnish the Control Officer a written report of the results of such performance test(s).
[40 CFR 60.8(a)]
D. Compliance with Standards and Maintenance Requirements

1. At all times, including periods of startup, shutdown, and malfunction, the Permittee shall, to the extent practicable, maintain and operate IG T3 including associated air pollution control equipment in a manner consistent with good air pollution control practice for minimizing emissions. Determination of whether acceptable operating and maintenance procedures are being used will be based on information available to the Control Officer which may include, but is not limited to, monitoring results, opacity observations, review of operating and maintenance procedures, and inspection of the source. [40 CFR 60.11(d)]

2. For the purpose of submitting compliance certifications or establishing whether or not the Permittee has violated or is in violation of any standard in 40 CFR Part 60, nothing shall preclude the use, including the exclusive use, of any credible evidence or information, relevant to whether a source would have been in compliance with applicable requirements if the appropriate performance or compliance test or procedure had been performed. [40 CFR 60.11(g)]

E. Circumvention

The Permittee shall not build, erect, install, or use any article, machine, equipment or process, the use of which conceals an emission, which would otherwise constitute a violation of an applicable standard. Such concealment includes, but is not limited to, the use of gaseous diluents to achieve compliance with opacity standard or with a standard, which is based on the concentration of a pollutant in the gases discharged to the atmosphere. [40 CFR 60.12]

F. General Notification and Reporting Requirements

The Permittee shall comply with the “General Notification and Reporting Requirements” found in 40 CFR 60.19. [40 CFR 60.19]

III SPECIFIC CONDITIONS

A. Operational Limitations

The Permittee shall not cause or allow the combustion of any fuel in Unit IGT3 other than pipeline quality natural gas. [PCC 17.12.190.B]

B. Nitrogen Oxide

 a. The Permittee shall not allow the NOx concentration to exceed 25 ppm at 15 percent O_2 or 1.2 pound per megawatt-hour as determined by the NOx and diluent CEMS based on a 4-hour rolling average. [40 CFR 60.4320 Table 1, 60.4325 & 60.4380(b)(1)]

October 29, 2010
b. The Permittee shall not allow the total combined emissions of NOx from Unit IGT3 to equal or exceed 40 tons per year, calculated as a 12-month rolling total. [PCC 17.12.190.B]

[Material Permit Condition]

2. Air Pollution Control Equipment

The Permittee must operate and maintain the stationary combustion turbine, air pollution control equipment, and monitoring equipment in a manner consistent with good air pollution control practices for minimizing NOx emissions at all times including during startup, shutdown, and malfunction. [40 CFR 60.4333(a)] [Material Permit Condition]

a. The Permittee must install and certify each NOx diluent CEMS according to 40 CFR 60 Appendix B, Performance Specification 2 (PS 2), except the 7-day calibration drift is based on unit operating days, not calendar days and the relative accuracy test audit (RATA) shall be performed in lb/ MMBtu basis. [40 CFR 60.4345(a)] [Material Permit Condition]

b. The Permittee shall demonstrate compliance with the NOx emission limitation in III.B.1.a of Attachment G as follows:

i. Install, calibrate, maintain, and operate a continuous monitoring system (CMS) to monitor and record the fuel consumption and the ratio of water to fuel being fired in Unit IGT3 when burning a fuel that requires water injection for compliance; or [40 CFR 60.4335(a)]

ii. Alternatively, the Permittee shall in accordance with III.E.1 of Attachment G, install, certify, maintain and operate a continuous emission monitoring system (CEMS) consisting of a NOx monitor, and a diluent gas (CO₂ or O₂) monitor; to determine the hourly NOx emission rate in parts per million (ppm) or pounds per million British thermal units (lb/ MMBtu); and [40 CFR 60.4335(b)(1)]

iii. If complying with the output-based standard, the Permittee shall install, calibrate, maintain, and operate a fuel flow meter (or flow meters) to continuously measure the heat input to IGT3; and [40 CFR 60.4335(b)(2)]

iv. If complying with the output-based standard, the Permittee shall install, calibrate, maintain, and operate a watt meter (or meters) to continuously measure the gross electrical output of IGT3 in megawatt hours. [40 CFR 60.4335(b)(3)]

c. The Permittee shall install, calibrate, maintain and operate each watt meter, steam flow meter and each pressure or temperature measurement device according to manufacturer’s instructions. [40 CFR 60.4345(d)]

d. Annual NOx Emission Limit

To demonstrate compliance with the annual NOx emission limit in III.B.1.b of Attachment G, the Permittee shall comply with the continuous emission system monitoring, recordkeeping and reporting provisions in III.E.2 of Attachment G.
4. Performance Testing

 a. The Permittee shall perform the initial performance test as required by 40 CFR 60.8:

 [40 CFR 60.4405]

 b. The Permittee shall conduct annual performance tests (no more than 14 calendar months following the previous performance test).

 [40 CFR 60.4400(a)]

 c. The Permittee shall use EPA Method 7E or EPA Method 20 for III.B.1.a of Attachment G. For units complying with the output based standard, the Permittee shall concurrently measure the stack gas flow rate using EPA Methods 1 and 2, and measure and record the electrical and thermal output from IGT3. Then, use the following equation to calculate the NOx emission rate:

\[
E = \frac{1.194 \times 10^{-7} \times (NOx)_c \times Q_{std}}{P}
\]

where:

\[
E = NOx\text{ emission rate, in lb/MWh}
\]

\[
1.194 \times 10^{-7} = \text{conversion constant, in lb/ dscf-ppm}
\]

\[
(NOx)_c = \text{average NOx concentration for the run, in ppm}
\]

\[
Q_{std} = \text{stack gas volumetric flow rate, in dscf/ hr}
\]

\[
P = \text{gross electrical and mechanical energy output of the combustion turbine, in MW (for simple-cycle operation), for combined-cycle operation, the sum of all electrical and mechanical output from the combustion and steam turbines, or, for combined heat and power operation, the sum of all electrical and mechanical output from the combustion and steam turbines plus all useful recovered thermal output not used for additional electric or mechanical generation, in MW, calculated according to 40 CFR 60.4350(f)(2).}
\]

 d. The Permittee shall conduct NOx emission performance test in accordance with 40 CFR 60.4400 or 40 CFR 60.4405.

C. Sulfur Dioxide

1. Emission Limitations/Standards

 a. The Permittee shall not burn in Unit IGT3, any fuel that contains sulfur in excess of 0.060 pounds SO\(_2\) per million British thermal unit (lb of SO\(_2\)/MMBtu) heat input.

 [40 CFR 60.4365][PCC 17.12.190.B]

 [Material Permit Condition]

 b. The Permittee shall not allow the total combined emissions of SO\(_2\) from Unit IGT3 to equal or exceed 40 tons per year, calculated as a 12-month rolling total.

 [PCC 17.12.190.B]

 [Material Permit Condition]

2. Monitoring, Recordkeeping and Reporting Requirements

 a. The Permittee shall be exempted from monitoring the total sulfur content of fuel combusted in IGT3, by keeping readily available for inspection, a paper or electronic record of a current, valid purchase contract, tariff sheet or transportation contract for the fuel, specifying that the maximum total sulfur content for natural gas use is 20 grains of

October 29, 2010
sulfur or less per 100 standard cubic feet and has potential sulfur emissions of less than less than 26 ng SO\(_2\)/J (0.060 lb SO\(_2\)/MMBtu) heat input. [40 CFR §60.4365(a)]

b. To demonstrate compliance with III.C.1.b of Attachment G, the Permittee shall comply with the continuous emission monitoring, recordkeeping, and reporting requirements in III.E.2 of Attachment G.

D. Carbon Monoxide

1. Emission Limitations/Standards

The Permittee shall not allow the total combined emissions of carbon monoxide (CO) from IGT3 to equal or exceed 100 tons per year, calculated as a 12-month rolling total. [PCC 17.12.190.B] [Material Permit Condition]

a. The Permittee shall install, calibrate, maintain and operate a Continuous Emission Monitoring System (CEMS) consisting of CO and O\(_2\) or CO\(_2\) monitors for measuring CO emissions and diluent from IGT3. [Material Permit Condition]

b. The Permittee shall install, calibrate, maintain and operate the in-line fuel flowmeter monitoring systems for determining the natural gas input rate to IGT3 for each operating hour according to the manufacturer’s instructions. [40 CFR 60.4345(c)] [Material Permit Condition]

c. To demonstrate compliance with the annual CO emission limit in III.D.1 of Attachment G, the Permittee shall comply with the CEMS monitoring, recordkeeping, and reporting requirements in Condition III.E.2 of Attachment G.

E. Continuous Emissions Monitoring Systems (CEMS) [40 CFR §60.13, PCC 17.12.050.H.3]

1. New Source Performance Standards for Continuous Emission Monitoring Systems

To demonstrate compliance with III.B.1.a of Attachment G the Permittee shall install, calibrate, maintain, and operate a continuous emission monitoring system (CEMS) and data acquisition handling system (DAHS) to calculate a four hour rolling average NO\(_x\) emission rate.

a. The Permittee shall comply with the following requirements in the General Provisions of 40 CFR 60 for each CEMS unit installed:

i. The CEMS and DAHS monitoring and recording devices shall be installed and operational prior to conducting initial performance test. Verification of operational status shall, as a minimum, include completion of the manufacturer's written requirements or recommendations for installation, operation, and calibration of the device. [40 CFR 60.13 (b)]

ii. The Permittee shall automatically check the zero (or low level value between 0 and 20 percent of span value) and span (50 to 100 percent of span value) calibration drifts at least once daily in accordance with a written procedure. The zero and span
must, as a minimum, be adjusted whenever either the 24-hour zero drift or the 24-hour span drift exceeds two times the limit of the applicable performance specification in 40 CFR, Part 60, appendix B. The system must allow the amount of the excess zero and span drift to be recorded and quantified whenever specified.

[40 CFR 60.13 (d)(1)]

iii. Except for system breakdowns, repairs, calibration checks, and zero and span adjustments required under II.B.5 of Attachment G, the CEMS shall be in continuous operation and shall complete a minimum of one cycle of operation (sampling, analyzing, and data recording) for each successive 15-minute period.

[40 CFR 60.13 (e) & (e)(2)]

iv. The CEMS devices shall be installed such that representative measurements of emissions or process parameters from the affected facility are obtained. Additional procedures for location of continuous monitoring systems contained in the applicable Performance Specifications of appendix B of 40 CFR 60 (III.E.1.b of Attachment G) shall be used.

[40 CFR 60.13 (f)]

v. The Permittee shall reduce all data to 1-hour averages as defined in 40 CFR 60.2. 1-hour averages shall be computed from four or more data points equally spaced over each 1-hour period. Data recorded during periods of continuous system breakdown, repair, calibration checks, and zero and span adjustments shall not be included in the data averages computed under III.E.1.a.v of Attachment G. The data may be recorded in reduced or non-reduced form (e.g., ppm pollutant and percent O$_2$ or ng/J of pollutant). All excess emissions shall be converted into units of the standard. After conversion into units of the standard, the data may be rounded to the same number of significant digits as used to specify the emission limit.

[40 CFR 60.13 (h)]

vi. The Permittee shall meet the notification and recordkeeping requirements in II.B.1.d and II.B.5 of Attachment G.

b. The Permittee shall comply with the following requirements in the Performance Specifications of 40 CFR 60 Appendix B, for each CEMS unit installed:

i. The CEMS installation and measurement location specification shall be in accordance with the methods and procedures in 40 CFR Part 60, Appendix B, Specification 2, Sections 2 & 8.1.

ii. Pretest preparation shall be in accordance with the methods and procedures in 40 CFR Part 60, Appendix B, Specification 2, Sections 2 & 8.2.

iii. Calibration drift test procedure shall be in accordance with the methods and procedures in 40 CFR Part 60, Appendix B, Specification 2, Sections 2 & 8.3.

iv. Relative accuracy test procedure shall be in accordance with the methods and procedures in 40 CFR Part 60, Appendix B, Specification 2, Sections 2 & 8.4.

v. Reporting requirements shall be in accordance with the methods and procedures in 40 CFR Part 60, Appendix B, Specification 2, Sections 2 & 8.5.

vi. Analytical procedures shall be in accordance with the methods and procedures in 40 CFR Part 60, Appendix B, Specification 2, Sections 2 & 11.0.
vii. Calculation and data analysis shall be in accordance with the methods and procedures in 40 CFR Part 60, Appendix B, Specification 2, Sections 2 & 12.0.

viii. Method performance shall be in accordance with the methods and procedures in 40 CFR Part 60, Appendix B, Specification 2, Sections 2 & 13.0.

ix. Alternative Procedures shall be in accordance with the methods and procedures in 40 CFR Part 60, Appendix B, Specification 2, Sections 2 & 16.0.

x. References are located in 40 CFR Part 60, Appendix B, Specification 2, Sections 2 & 17.0.

xi. Tables, Diagrams, Flowcharts, and Validation data necessary for NOx CEMS testing are located in 40 CFR Part 60, Appendix B, Specification 2, Sections 2 & 18.0.

xii. Specifications and test procedures for O\textsubscript{2} and CO\textsubscript{2} CEMS in Stationary Systems shall be in accordance with the methods and procedures in 40 CFR Part 60, Appendix B, Specification 3.

xiii. Specifications and Test Procedures for CO CEMS in Stationary Sources shall be in accordance with the methods and procedures in 40 CFR Part 60, Appendix B, Specification 4.

c. The Permittee shall maintain and operate each CEMS unit in accordance with the following:

i. As specified in III.E.1.a.iii of Attachment G, during each full unit operating hour, both the NOx monitor and the diluent monitor must complete a minimum of one cycle of operation (sampling, analyzing, and data recording) for each 15-minute quadrant of the hour, to validate the hour. For partial unit operating hours, at least one valid data point shall be obtained with each monitor for each quadrant of the hour in which a unit operates. For unit operating hours in which required quality assurance and maintenance activities are performed on the CEMS, a minimum of two valid data points (one in each of two quadrants) are required for each monitor to validate the NOx emission rate for the hour. [40 CFR 60.4345(b)]

ii. All CEMS data must be reduced to hourly averages as specified III.E.1.a.v of Attachment G. [40 CFR 60.4350(a)]

iii. For each unit operating hour in which a valid hourly average, as described in III.E.1.c.i of Attachment G, is obtained for both NOx and diluent monitors, the DAHS must calculate and record the hourly NOx emission rate in units of ppm or lb/ MMBtu, using the appropriate equation from method 19 in appendix A of this part. For any hour in which the hourly average \(\text{O}_2 \) concentration exceeds 19.0 percent \(\text{O}_2 \) (or the hourly average \(\text{CO}_2 \) concentration is less than 1.0 percent \(\text{CO}_2 \)), a diluent cap value of 19.0 percent \(\text{O}_2 \) or 1.0 percent \(\text{CO}_2 \) (as applicable) may be used in the emission calculations. [40 CFR 60.4350(b)]

iv. Correction of measured NOx concentrations to 15 percent \(\text{O}_2 \) is not allowed. [40 CFR 60.4350(c)]
v. The Permittee shall reduce all required fuel flow rate, steam flow rate, temperature, pressure, and megawatt data to hourly averages. [40 CFR 60.4350(e)]

vi. The Permittee shall calculate the hourly average NOx emission rates, in units of either ppm (parts per million) for units complying with the concentration limit or in pounds per megawatt hour (lb/MWh) for units complying with the output based standard by using the simple cycle operation equation below: [40 CFR 60.4350(f)]

\[
E = \frac{(NO_x)_h \cdot (HI)_h}{P} \quad \text{where:}
\]

\[
E = \text{hourly NO}_x \text{ emission rate, in lb/MWh.}
(NO_x)_h = \text{hourly NO}_x \text{ emission rate, in lb/MMBtu.}
(HI)_h = \text{hourly heat input rate to the unit, in MMBtu/h, measured using the fuel flow meter(s). e.g., calculated using Equation D-15a in appendix D to 40 CFR Part 75.}
P = \text{gross energy output of the combustion turbine in MW.}
\]

vii. The Permittee shall develop and keep on-site a quality assurance (QA) plan for all of the continuous monitoring equipment described in III.B.3.a, III.D.2.b and III.B.3.c. [40 CFR 60.4345(e)]

a. For the purpose of compliance demonstration with annual NOx, and CO emission limits, the Permittee shall utilize the NOx, CO, diluent CEMS on Unit IGT3 in conjunction with the Data Acquisition and Handling System (DAHS) and fuel flow rate monitoring systems. A default value for SO2 concentration will be calculated using equation 3 below. The DAHS will calculate emissions of NOx, SO2 and CO in pounds per hour (lb/hr), tons per month, and tons per year, calculated monthly as a 12-month rolling total. The Permittee shall use the procedures in Method 19 of 40 CFR 60 Appendix A as applicable to calculate NOx, and CO mass emission rates.

b. The Permittee shall calculate SO2 mass emission rates for Unit IGT3 using Equation 3 and 3A below:

\[
ER = \frac{(2.0 \times 10^6 \times S_{\text{total}} \times GCV)}{7000} \quad \text{where:}
\]

\[
ER = \text{Default SO2 emission rate for natural gas combustion, lb/mmBtu}
S_{\text{total}} = \text{Total sulfur content of the natural gas from a valid purchase agreement, tariff agreement, or sampling, gr/100 scf}
GCV = \text{Gross calorific value of the natural gas from a valid purchase agreement, tariff agreement, or sampling, Btu/100 scf}
7,000 = \text{Conversion of grains/100 scf to lb/100 scf}
10^6 = \text{Conversion factor (Btu/mmBtu)}
\]

\[
SO_2 \text{ rate} = ER \times HI \text{ rate} \quad \text{where:}
\]

\[
SO_2 \text{ rate} = \text{Hourly mass emission rate of SO2, lb/hr}
ER = \text{SO2 default emission rate of 0.06 lbs/MMBtu}
\]
HI rate = Hourly heat input rate, MMBtu/hr

c. A period of monitor downtime shall be any unit operating hour in which sufficient data are not obtained to validate the hour, for NOx, CO, and diluent concentration or heat input rate.

d. During CEMS system downtime, the Permittee shall implement the missing data procedures for NOx and CO shown in 40 CFR Part 75 Subpart D – Missing Data Substitution Procedures

e. Each calendar month during which the combined 12-month rolling total for the NOx emission rate from Unit IGT3 exceeds 40 tons shall constitute an exceedance. Exceedances shall be reported to the Control Officer in accordance with XI.A of Part A.

f. Each calendar month during which the combined 12-month rolling total for the SO\textsubscript{2}, emission rate from Unit IGT3, exceeds 40 tons shall constitute an exceedance. Exceedances shall be reported to the Control Officer in accordance with XI.A of Part A.

g. Each calendar month during which the combined 12-month rolling total for the CO emission rate from Unit IGT3, exceeds 100 tons shall constitute an exceedance. Exceedances shall be reported to the Control Officer in accordance with XI.A of Part A.

h. Each individual day and 12-month rolling total for NOx, SO\textsubscript{2}, and CO emission rates in the reporting period shall be included in the semiannual compliance certification required by VII of Part A.

i. Quality Assurance Requirements for Natural Gas Fuel Flow meters

 i. Each transmitter or transducer shall be calibrated by equipment that has a current certificate of traceability to NIST standards at least once every four calendar quarters in which a unit operated on natural gas for 168 hours or more during each quarter but not less than once every three years. The Permittee shall check the calibration of each transmitter or transducer by comparing its readings to that of the NIST traceable equipment at least once at the following levels: the zero-level, and at least two other upscale levels (e.g., “mid” and “high”), such that the full range of transmitter or transducer readings corresponding to normal unit operation is represented.

 ii. The Permittee shall calculate the accuracy of each transmitter or transducer at each level tested, using the following equation:

 \[
 ACC = \frac{[R - T]}{FS} \times 100
 \]

 where:

 \begin{align*}
 ACC & = \text{Accuracy of the transmitter or transducer as a percentage of full-scale.} \\
 R & = \text{Reading of the NIST traceable reference value (in milliamperes, inches of water, psi, or degrees).} \\
 T & = \text{Reading of the transmitter or transducer being tested (in milliamperes, inches of water, psi, or degrees, consistent with the}
 \end{align*}
units of measure of the NIST traceable reference value).

FS = Full-scale range of the transmitter or transducer being tested
 (in milliamperes, inches of water, psi, or degrees, consistent with
 the units of measure of the NIST traceable reference value).

iii. If each transmitter or transducer meets an accuracy of ± 1.0 percent of its full-scale
 range at each level tested, the fuel flow meter accuracy of 2.0 percent is considered
to be met at all levels. If however, one or more of the transmitters or transducers
does not meet an accuracy of ± 1.0 percent of full-scale at a particular level, then
the Permittee may demonstrate that the fuel flow meter meets the total accuracy
specification of 2.0 percent at that level by using one of the following alternative
methods. If, at a particular level, the sum of the individual accuracies of the three
transducers is less than or equal to 4.0 percent, the fuel flow meter accuracy
specification of 2.0 percent is considered to be met for that level. Or, if at a
particular level, the total fuel flow meter accuracy is 2.0 percent or less, when
calculated in accordance with Part 1 of American Gas Association Report No. 3,
General Equations and Uncertainty Guidelines, the flow meter accuracy
requirement is considered to be met for that level.

iv. If during a transmitter or transducer accuracy test the flow meter accuracy
 specification of 2.0 percent is not met at any of the levels tested, the Permittee shall
repair or replace the transmitter(s) or transducer(s) as necessary until the flow
meter accuracy specification has been achieved at all levels. (Note that only
transmitters or transducers which are repaired or replaced need to be re-tested;
however, the re-testing is required at all three measurement levels to ensure that the
flow meter accuracy specification is met at each level).

v. For orifice-, nozzles, and venturi type flow meters, the Permittee shall perform a
 primary element inspection for damage and corrosion at least once every 12
calendar quarters in which a unit operated on natural gas for 168 hours or more
during each quarter but not less than once during the term of this permit. If damage
and/or corrosion are found, the Permittee shall replace the flow meter or restore the
damaged or corroded flow meter to “as new” condition.

vi. The Permittee shall log in ink, or in an electronic format the date that the
 calibration and inspection was conducted, the results of the calibration or
 inspection, and corrective action taken if needed.
I. APPLICABILITY – 40 CFR 60 Subpart GG

This alternate operating scenario #2 shall only apply to the turbine that will be identified as IGT3 upon purchase should the applicability date of IGT3 be subject to 40 CFR 60 Subpart GG. TEP-IGS shall notify PDEQ upon purchasing the turbine. The notification shall include all reporting requirements that are identified in this attachment.

II. GENERAL PROVISIONS

The following requirements apply to the operation, maintenance, recordkeeping and testing of Unit IGT3 and its associated monitoring systems in accordance with 40 CFR Part 60, Subpart A – General Provisions. These requirements are in addition to any applicable requirements in the General Provisions in Part A of this permit, unless Attachment H is more stringent.

A. Mailing Address

All requests, reports, applications, submittals, and other communications to the Administrator and Control Officer pursuant to 40 CFR Part 60 shall be submitted in duplicate to the Administrator and Control Officer at the following addresses:

Director, Air Division
U.S. Environmental Protection Agency
75 Hawthorne Street
San Francisco, CA 94105

Director
Pima County Department of Environmental Quality
33 North Stone Avenue, Suite 700
Tucson, AZ 85701

[40 CFR §60.4(a)]

B. Notification and Recordkeeping

1. The Permittee shall furnish the Control Officer written notification as follows:

a. A notification of the date of construction of Unit IGT3 is commenced postmarked no later than 30 days after such date (date of construction). [40 CFR 60.7(a)(1)]

b. A notification of the actual date of initial startup of Unit IGT3 postmarked within 15 days of after such date (date of initial startup). [40 CFR 60.7(a)(3)]

c. A notification of any physical or operational change to an existing facility which may increase the emission rate of any air pollutant to which a standard applies, unless that change is specifically exempted under an applicable subpart or in 40 CFR 60.14(e). This notice shall be postmarked 60 days or as soon as practicable before the change is commenced and shall include information describing the precise nature of the change, present and proposed emission control systems, productive capacity of the facility before and after the change, and the expected completion date of the change. The Control Officer may request additional relevant information subsequent to this notice. [40 CFR 60.7(a)(4)]
d. A notification of the date upon which demonstration of the continuous monitoring system performance commences in accordance with 40 CFR 60.13(c) postmarked not less than 30 days prior to such date. [40 CFR 60.7(a)(5)]

e. A notification of the anticipated date for conducting the opacity observations required by 40 CFR 60.11(e)(1). The notification shall also include, if appropriate, a request for the Administrator to provide a visible emissions reader during a performance test. The notification shall be postmarked not less than 30 days prior to such date. [40 CFR 60.7(a)(6)]

f. A notification that continuous opacity monitoring system data results will be used to determine compliance with the applicable opacity standard during a performance test required by 40 CFR 60.8 in lieu of Method 9 observation data as allowed by 40 CFR 60.11(e)(5). This notification shall be postmarked not less than 30 days prior to the date of the performance test. [40 CFR 60.7(a)(7)]

2. The Permittee shall maintain records of the occurrence and duration of any startup, shutdown, or malfunction in the operation of an affected facility; any malfunction of the air pollution control equipment; or any periods during which a continuous monitoring system or monitoring device is inoperative. [40 CFR 60.7(b)]

3. The Permittee shall submit excess emissions and monitoring systems performance reports and/or summary report form to the Control Officer semi-annually, except when: more frequent reporting is specifically required by an applicable subpart; or the Control Officer, on a case-by-case basis, determines that more frequent reporting is necessary to accurately assess the compliance status of the source. All reports shall be postmarked by the 30th day following the end of each six-month period. Written reports of excess emissions shall include the following information: [40 CFR 60.7(c) & PCC 17.12.040.B]

a. The magnitude of excess emissions computed in accordance with 40 CFR 60.13(h), any conversion factor(s) used, and the date and time of commencement and completion of each time period of excess emissions and the process operating time during the reporting period. [40 CFR 60.7(c)(1)]

b. Specific identification of each period of excess emissions that occurs during startups, shutdowns, and malfunctions of the affected facility. The nature and cause of any malfunction (if known), the corrective action taken or preventative measures adopted. [40 CFR 60.7(c)(2)]

c. The date and time identifying each period during which the continuous monitoring system was inoperative except for zero and span checks and the nature of the system repairs or adjustments. [40 CFR 60.7(c)(3)]

d. When no excess emissions have occurred or the continuous monitoring system(s) have not been inoperative, repaired, or adjusted, such information shall be stated in the report. [40 CFR 60.7(c)(4)]

4. The summary report form submitted by the Permittee shall contain the information and be in the format shown in 40 CFR 60.7(d) figure 1 unless otherwise specified by the Administrator. One summary report form shall be submitted for each pollutant monitored at IGT3. [40 CFR 60.7(d)]

a. If the total duration of excess emissions for the reporting period is less than 1 percent of the total operating time for the reporting period and CMS downtime for the reporting

period is less than 5 percent of the total operating time for the reporting period, only the summary report form shall be submitted and the excess emission report described in II.B.3 of Attachment H need not be submitted unless requested by the Administrator. [40 CFR 60.7(d)(1)]

b. If the total duration of excess emissions for the reporting period is 1 percent or greater of the total operating time for the reporting period or the total CMS downtime for the reporting period is 5 percent or greater of the total operating time for the reporting period, the summary report form and the excess emission report described in II.B.3 of Attachment H shall both be submitted. [40 CFR 60.7(d)(2)]

5. The Permittee shall maintain a file of all measurements, including continuous monitoring system, monitoring device, and performance testing measurements; all continuous monitoring system performance evaluations; all continuous monitoring system or monitoring device calibration checks; adjustments and maintenance performed on these systems or devices; and all other information required in a permanent form suitable for inspection. The file shall be retained for at least two years following the date of such measurements, maintenance, reports, and records, except as follows: [40 CFR 60.7(f)]

a. If the Permittee is required to install a continuous emissions monitoring system (CEMS) where the CEMS installed is automated, and where the calculated data averages do not exclude periods of CEMS breakdown or malfunction. An automated CEMS records and reduces the measured data to the form of the pollutant emission standard through the use of a computerized data acquisition system. In lieu of maintaining a file of all CEMS subhourly measurements as required in II.B.5 of Attachment H, the Permittee shall retain the most recent consecutive three averaging periods of subhourly measurements and a file that contains a hard copy of the data acquisition system algorithm used to reduce the measured data into the reportable form of the standard. [40 CFR 60.7(f)(1)]

b. If the Permittee is required to install a CEMS where the measured data is manually reduced to obtain the reportable form of the standard, and where the calculated data averages do not exclude periods of CEMS breakdown or malfunction. In lieu of maintaining a file of all CEMS subhourly measurements as required under II.B.5 of Attachment H the Permittee shall retain all subhourly measurements for the most recent reporting period. The subhourly measurements shall be retained for 120 days from the date of the most recent summary or excess emission report submitted to the Administrator. [40 CFR 60.7(f)(2)]

c. The Administrator or Control Officer, upon notification to the source, may require the Permittee to maintain all measurements as required by II.B.5 of Attachment H, if the Administrator or Control Officer determines these records are required to more accurately assess the compliance status of the affected source. [40 CFR 60.7(f)(3)]

C. Performance Tests

Within 60 days after achieving the maximum production rate at which IGT3 will be operated, but not later than 180 days after initial startup of IGT3 and at such other times as may be required by the Control Officer under section 114 of the Act, the Permittee shall conduct emissions performance test(s) for NOx and SO2, and furnish the Control Officer a written report of the results of such performance test(s). [40 CFR 60.8(a)]

October 29, 2010
D. Compliance with Standards and Maintenance Requirements

1. At all times, including periods of startup, shutdown, and malfunction, the Permittee shall, to the extent practicable, maintain and operate IGT3 including associated air pollution control equipment in a manner consistent with good air pollution control practice for minimizing emissions. Determination of whether acceptable operating and maintenance procedures are being used will be based on information available to the Control Officer which may include, but is not limited to, monitoring results, opacity observations, review of operating and maintenance procedures, and inspection of the source. [40 CFR 60.11(d)]

2. For the purpose of submitting compliance certifications or establishing whether or not the Permittee has violated or is in violation of any standard in 40 CFR Part 60, nothing shall preclude the use, including the exclusive use, of any credible evidence or information, relevant to whether a source would have been in compliance with applicable requirements if the appropriate performance or compliance test or procedure had been performed. [40 CFR 60.11(g)]

E. Circumvention

The Permittee shall not build, erect, install, or use any article, machine, equipment or process, the use of which conceals an emission, which would otherwise constitute a violation of an applicable standard. Such concealment includes, but is not limited to, the use of gaseous diluents to achieve compliance with opacity standard or with a standard, which is based on the concentration of a pollutant in the gases discharged to the atmosphere. [40 CFR 60.12]

F. General Notification and Reporting Requirements

The Permittee shall comply with the “General Notification and Reporting Requirements” found in 40 CFR 60.19. [40 CFR 60.19]

III SPECIFIC CONDITIONS

A. Operational Limitations

The Permittee shall not cause or allow the combustion of any fuel in Unit IGT3 other than pipeline quality natural gas. [PCC 17.12.190.B]

B. Nitrogen Oxide

 a. On and after the date of the performance test required by II.C of Attachment H is completed, the Permittee shall not cause to be discharged into the atmosphere from Unit IGT3) any gases which contain nitrogen oxides (NOx) in excess of: [40 CFR 60.332(a)(1) & 60.332(b)]

 [Material Permit Condition]
\[
STD = 0.0075 \left(\frac{14.4}{Y} \right) + F
\]

where:

STD = allowable ISO corrected (if required as given in 40 CFR 60.335(b)(1)) NO\textsubscript{x} emission concentration (percent by volume at 15 percent oxygen and on a dry basis),

Y = manufacturer's rated heat rate at manufacturer's rated load (kilojoules per watt hour) or, actual measured heat rate based on lower heating value of fuel as measured at actual peak load for the facility. The value of Y shall not exceed 14.4 kilojoules per watt hour, and

F = NO\textsubscript{x} emission allowance for fuel-bound nitrogen = 0.

For Gas Turbine Units IGT3, STD = 75 ppmv at 15% oxygen

b. The Permittee shall not allow the total combined emissions of nitrogen oxides from Unit IGT3 to equal or exceed 40 tons per year, calculated as a 12-month rolling total. [PCC 17.12.190.B] [Material Permit Condition]

2. Air Pollution Control Equipment

At all times, including during startup, shutdown, and malfunction, the Permittee shall, to the extent practicable, maintain and operate Unit IGT3 including associated air pollution control equipment and monitoring equipment in a manner consistent with good air pollution control practices for minimizing NO\textsubscript{x} emissions. [40 CFR 60.11(d)][PCC 17.12.180.A.2] [Material Permit Condition]

a. The Permittee shall install, certify, maintain, operate and quality-assure Continuous Emission Monitoring Systems (CEMS) consisting of NO\textsubscript{x} and O\textsubscript{2} (or CO\textsubscript{2}) monitors for measuring NO\textsubscript{x} emissions from Gas Turbine Unit IGT3. [PCC 17.12.180.A.2] [Material Permit Condition]

b. The Permittee shall install, calibrate, maintain, and operate fuel flow rate monitoring systems for determining the natural gas input rate to gas turbine unit IGT3 for each operating hour. The fuel flow rate monitoring system shall be calibrated and quality-assured in accordance with III.E.2.i of Attachment H. [PCC 17.12.180.A.2] [Material Permit Condition]

The Permittee shall comply with the following requirements contained in 40 CFR Part 60 Subpart GG as amended on July 8, 2004.

i. The Permittee shall comply with the NO\textsubscript{x} emission limitation in III.B.1.a.of Attachment H by using one of the following methods:
(A) Install, calibrate, maintain, and operate a continuous monitoring system to monitor and record the fuel consumption and the ratio of water to fuel being fired in Unit IGT3.

[B] Utilize the CEMS required by III.B.3.a of Attachment H and demonstrate compliance in accordance with III.B.3.c.iii of Attachment H.

II. If the Permittee elects to demonstrate compliance with III.B.1.a. of Attachment H by continuously monitoring the water to fuel ratio as provided by III.B.3.c.i.(A) of Attachment H, the following requirements shall apply:

(A) The water to fuel ratio in III.B.3.c.i.(A) of Attachment H shall be monitored during the performance test required under 40 CFR 60.8 to establish acceptable values and ranges. The Permittee may supplement the performance test data with engineering analyses, design specifications, manufacturer's recommendations and other relevant information to define the acceptable parametric ranges more precisely. The Permittee shall develop and keep on-site a parameter monitoring plan which explains the procedures used to document proper operation of the NOx emission controls. The plan shall include the parameter(s) monitored and the acceptable range(s). Any supplemental data such as engineering analyses, design specifications, manufacturer's recommendations and other relevant information shall be included in the monitoring plan.

(B) The Permittee shall submit reports of excess emissions and monitor downtime, in accordance with 40 CFR 60.7(c). Excess emissions shall be reported for all periods of Unit IGT3 operation, including startup, shutdown and malfunction. Excess emissions and monitor downtime that shall be reported are defined as follows:

(1) An excess emission shall be any unit operating hour for which the average water to fuel ratio, as measured by the continuous monitoring system, falls below the acceptable water to fuel ratio needed to demonstrate compliance with III.B.1.a. of Attachment H, as established during the performance test required in 40 CFR 60.8. Any unit operating hour in which no water is injected into the turbine shall also be considered an excess emission.

(2) A period of monitor downtime shall be any unit operating hour in which water is injected into the turbine, but the essential parametric data needed to determine the water to fuel ratio are unavailable or invalid.

(3) Each report shall include the average water to fuel ratio, average fuel consumption, ambient conditions (temperature, pressure, and humidity) and gas turbine load. The Permittee is not required to report ambient conditions if opting to use the worst case ISO correction factor as specified in 40 CFR 60.334(b)(3)(ii).

III. If the Permittee elects to demonstrate compliance with III.B.1.a. of Attachment H using CEMS as provided by III.B.3.c.i.(B) of Attachment H, the following requirements shall apply:
(A) The NO\textsubscript{x} and diluent CEMS shall be installed, certified, maintained and operated as follows:

(1) Each CEMS must be installed and certified according to Performance Specification 2 and 3 (for diluent) of 40 CFR Part 60, Appendix B, except the 7-day calibration drift is based on unit operating days, not calendar days. \([40 \text{ CFR 60.334(b)(1)}]\)

(2) The NO\textsubscript{x} and diluent CEMS on Unit IGT3 shall be installed and operational prior to conducting performance tests as required by III.B.4 of Attachment H. \([40 \text{ CFR 60.13(b)}]\)

(3) During each full unit operating hour, each monitor must complete a minimum of one cycle of operation (sampling, analyzing, and data recording) for each 15-minute quadrant of the hour, to validate the hour. For partial unit operating hours, at least one valid data point must be obtained for each quadrant of the hour in which the unit operates. For unit operating hours in which required quality assurance and maintenance activities are performed on the CEMS, a minimum of two valid data points (one in each of two quadrants) are required to validate the hour. \([40 \text{ CFR 60.334(b)(2)}]\)

(4) For the purpose of identifying excess emissions, CEMS data must be reduced to hourly averages as specified in 40 CFR 60.13(h). \([40 \text{ CFR 60.334(b)(3)}]\)

(5) For each unit operating hour in which a valid hourly average is obtained for both NO\textsubscript{x} and diluent, the data acquisition and handling system must calculate and record the hourly NO\textsubscript{x} emissions in the units of the applicable NO\textsubscript{x} emission standard under III.B.1.a. of Attachment H of this Attachment. For any hour in which the hourly average O\textsubscript{2} concentration exceeds 19.0 percent O\textsubscript{2}, a diluent cap value of 19.0 percent O\textsubscript{2} may be used in the emission calculations. \([40 \text{ CFR 60.334(b)(3)(i)}]\)

(6) A worst case ISO correction factor may be calculated and applied using historical ambient data in accordance with the procedures in 40 CFR 60.334(b)(3)(ii). \([40 \text{ CFR 60.334(b)(3)(ii)}]\)

(B) The Permittee shall submit reports of excess emissions and monitor downtime in accordance with 40 CFR 60.7(c). The reports shall be postmarked by the 30th day following the end of each calendar quarter. Excess emissions shall be reported for all periods of unit operation, including startup, shutdown and malfunction. Periods of excess emissions and monitor downtime that shall be reported are defined as follows: \([40 \text{ CFR 60.334(j)(1)(iii)}]\)

(1) An hour of excess emissions shall be any unit operating hour in which the 4-hour rolling average NO\textsubscript{x} concentration exceeds the applicable emission limit in Condition III.B.1.a of Attachment H. A 4-hour rolling average NO\textsubscript{x} concentration is the arithmetic average of the average NO\textsubscript{x} concentration measured by the CEMS for a given hour (corrected
to 15 percent O₂ and, to ISO standard conditions) and the three unit operating hour average NOₓ concentrations immediately preceding that unit operating hour.

(2) A period of monitor downtime shall be any unit operating hour in which sufficient data are not obtained to validate the hour, for either NOₓ concentration or diluent (or both).

(3) Each report shall include the ambient conditions (temperature, pressure, and humidity) at the time of the excess emission period. The Permittee is not required to report ambient conditions if opting to use the worst case ISO correction factor as specified in 40 CFR 60.334(b)(3)(ii).

d. Annual NOx Emission Limit

To demonstrate compliance with the annual NOx emission limit in III.B.1.b of Attachment H, the Permittee shall comply with the continuous emission system monitoring, recordkeeping and reporting provisions in III.E.2 of Attachment H.

4. Performance Testing

The Permittee shall conduct a NOₓ emissions performance test on Unit IGT3, in accordance with 40 CFR 60.8 and the test methods and procedures in 40 CFR 60.335. The performance test shall be used to demonstrate compliance with the emission limit contained in III.B.1.a of Attachment H. [40 CFR 60.335]

C. Sulfur Dioxide

1. Emission Limitations/ Standards

 a. The Permittee shall not burn in Unit IGT3, any fuel that contains total sulfur in excess of 0.8 percent by weight (8000 ppmw). [40 CFR 60.333(b)][PCC 17.12.190.B]

 [Material Permit Condition]

 b. The Permittee shall not allow the total combined emissions of SO₂ from Unit IGT3 to equal or exceed 40 tons per year, calculated as a 12-month rolling total. [PCC 17.12.190.B]

 a. The Permittee may elect not to monitor the total sulfur content of the gaseous fuel combusted in the turbine, if the gaseous fuel is demonstrated to meet the definition of natural gas in 40 CFR 60.331(u). The Permittee shall use one of the following sources of information to make the required demonstration: [40 CFR 60.334(h)(3)]

 i. The gas quality characteristics in a current, valid purchase contract, tariff sheet or transportation contract for the gaseous fuel, specifying that the maximum total sulfur content of the fuel is 20 grains / 100 scf or less; or

 ii. Representative fuel sampling data which shows that the sulfur content of the gaseous fuel does not exceed 20 grains / 100 scf. At a minimum, the amount of fuel...
b. To demonstrate compliance with III.C.1.b of Attachment H, the Permittee shall comply with the continuous emission monitoring, recordkeeping, and reporting requirements in III.E.2 of Attachment H.

D. Carbon Monoxide

1. Emission Limitations/Standards

The Permittee shall not allow the total combined emissions of carbon monoxide (CO) from IGT3 to equal or exceed 100 tons per year, calculated as a 12-month rolling total. [PCC 17.12.190.B] [Material Permit Condition]

a. The Permittee shall install, calibrate, maintain and operate and quality-assure a Continuous Emission Monitoring System (CEMS) consisting of CO and O2 or CO2 monitors for measuring CO emissions and diluent from IGT3. [PCC 17.12.180.A.2] [Material Permit Condition]

b. The Permittee shall install, calibrate, maintain and operate the in-line fuel flowmeter monitoring systems for determining the natural gas input rate to IGT3 for each operating hour according to the manufacturer’s instructions. [PCC 17.12.180.A.2] [Material Permit Condition]

c. To demonstrate compliance with the annual CO emission limit in III.D.1 of Attachment H, the Permittee shall comply with the CEMS monitoring, recordkeeping, and reporting requirements in Condition III.E.2 of Attachment H.

E. Continuous Emissions Monitoring Systems (CEMS) [40 CFR §60.13, PCC 17.12.050.H.3]

1. New Source Performance Standards for Continuous Emission Monitoring Systems

To demonstrate compliance with III.B.1.a of Attachment H the Permittee shall install, calibrate, maintain, and operate a continuous emission monitoring system (CEMS) and data acquisition handling system (DAHS) to calculate a four hour rolling average NOx emission rate.

a. The Permittee shall comply with the following requirements in the General Provisions of 40 CFR 60 for each CEMS unit installed:

i. The CEMS and DAHS monitoring and recording devices shall be installed and operational prior to conducting initial performance test. Verification of operational status shall, as a minimum, include completion of the manufacturer’s written requirements or recommendations for installation, operation, and calibration of the device. [40 CFR 60.13 (b)]
ii. The Permittee shall automatically check the zero (or low level value between 0 and 20 percent of span value) and span (50 to 100 percent of span value) calibration drifts at least once daily in accordance with a written procedure. The zero and span must, as a minimum, be adjusted whenever either the 24-hour zero drift or the 24-hour span drift exceeds two times the limit of the applicable performance specification in 40 CFR, Part 60, appendix B. The system must allow the amount of the excess zero and span drift to be recorded and quantified whenever specified.

\[40\text{ CFR 60.13 (d)(1)}\]

iii. Except for system breakdowns, repairs, calibration checks, and zero and span adjustments required under V.B.4.a (ii), the CEMS shall be in continuous operation and shall complete a minimum of one cycle of operation (sampling, analyzing, and data recording) for each successive 15-minute period.

\[40\text{ CFR 60.13 (e) & (e)(2)}\]

iv. The CEMS devices shall be installed such that representative measurements of emissions or process parameters from the affected facility are obtained. Additional procedures for location of continuous monitoring systems contained in the applicable Performance Specifications of appendix B of 40 CFR 60 (III.E.1.b of Attachment H) shall be used.

\[40\text{ CFR 60.13 (f)}\]

v. The Permittee shall reduce all data to 1-hour averages. 1-hour averages shall be computed from four or more data points equally spaced over each 1-hour period. Data recorded during periods of continuous system breakdown, repair, calibration checks, and zero and span adjustments shall not be included in the data averages. The data may be recorded in reduced or nonreduced form (e.g., ppm pollutant and percent O_2 or ng/J of pollutant). All excess emissions shall be converted into units of the standard. After conversion into units of the standard, the data may be rounded to the same number of significant digits as used to specify the emission limit.

\[40\text{ CFR 60.13 (h)}\]

vi. The Permittee shall meet the notification and recordkeeping requirements in II.B.1.d and II.B.5 of Attachment H.

b. The Permittee shall comply with the following requirements in the Performance Specifications of 40 CFR 60 Appendix B, for each CEMS unit installed:

i. The CEMS installation and measurement location specification shall be in accordance with the methods and procedures in 40 CFR Part 60, Appendix B, Specification 2, Sections 2 & 8.1.

ii. Pretest preparation shall be in accordance with the methods and procedures in 40 CFR Part 60, Appendix B, Specification 2, Sections 2 & 8.2.

iii. Calibration drift test procedure shall be in accordance with the methods and procedures in 40 CFR Part 60, Appendix B, Specification 2, Sections 2 & 8.3.

iv. Relative accuracy test procedure shall be in accordance with the methods and procedures in 40 CFR Part 60, Appendix B, Specification 2, Sections 2 & 8.4.

v. Reporting requirements shall be in accordance with the methods and procedures in 40 CFR Part 60, Appendix B, Specification 2, Sections 2 & 8.5.
vi. Analytical procedures shall be in accordance with the methods and procedures in 40 CFR Part 60, Appendix B, Specification 2, Sections 2 & 11.0.

vii. Calculation and data analysis shall be in accordance with the methods and procedures in 40 CFR Part 60, Appendix B, Specification 2, Sections 2 & 12.0.

viii. Method performance shall be in accordance with the methods and procedures in 40 CFR Part 60, Appendix B, Specification 2, Sections 2 & 13.0.

ix. Alternative Procedures shall be in accordance with the methods and procedures in 40 CFR Part 60, Appendix B, Specification 2, Sections 2 & 16.0.

x. References are located in 40 CFR Part 60, Appendix B, Specification 2, Sections 2 & 17.0.

xi. Tables, Diagrams, Flowcharts, and Validation data necessary for NOx CEMS testing are located in 40 CFR Part 60, Appendix B, Specification 2, Sections 2 & 18.0.

xii. Specifications and test procedures for O\textsubscript{2} and CO\textsubscript{2} CEMS in Stationary Systems shall be in accordance with the methods and procedures in 40 CFR Part 60, Appendix B, Specification 3.

xiii. Specifications and Test Procedures for CO CEMS in Stationary Sources shall be in accordance with the methods and procedures in 40 CFR Part 60, Appendix B, Specification 4.

a. For the purpose of compliance demonstration with annual NOx, and CO emission limits, the Permittee shall utilize the NOx, CO, diluent CEMS on Unit IGT3 in conjunction with the Data Acquisition and Handling System (DAHS) and fuel flow rate monitoring systems. A default value for SO\textsubscript{2} concentration will be calculated using equation 3 below. The DAHS will calculate emissions of NOx, SO\textsubscript{2} and CO in pounds per hour (lb/hr), tons per month, and tons per year, calculated monthly as a 12-month rolling total. The Permittee shall use the procedures in Method 19 of 40 CFR 60 Appendix A as applicable to calculate NOx, and CO mass emission rates.

b. The Permittee shall calculate SO\textsubscript{2} mass emission rates for Unit IGT3 using Equation 3 and 3A below:

\[
ER = \frac{2.0}{7000} \times 10^6 \times \left(\frac{S_{\text{total}}}{GCV} \right)
\]

where:

\[
ER = \text{Default SO2 emission rate for natural gas combustion, lb/mmBtu}
\]

\[
S_{\text{total}} = \text{Total sulfur content of the natural gas from a valid purchase agreement, tariff agreement, or sampling, gr/100 scf}
\]

\[
GCV = \text{Gross calorific value of the natural gas from a valid purchase agreement, tariff agreement, or sampling, Btu/100 scf}
\]

\[
7,000 = \text{Conversion of grains/100 scf to lb/100 scf}
\]

\[
10^6 = \text{Conversion factor (Btu/mmBtu)}
\]
SO₂ rate = ER x HI rate

\[\text{SO}_2 \text{ rate} = \text{ER} \times \text{HI rate} \quad \text{where:} \]

SO₂ rate = Hourly mass emission rate of SO₂, lb/hr
ER = SO₂ default emission rate of 0.06 lbs/MMBtu
HI rate = Hourly heat input rate, MMBtu/hr

c. A period of monitor downtime shall be any unit operating hour in which sufficient data are not obtained to validate the hour, for NOx, CO, and diluent concentration or heat input rate.
d. During CEMS system downtime, the Permittee shall implement the missing data procedures for NOx and CO shown in 40 CFR Part 75 Subpart D – Missing Data Substitution Procedures.
e. Each calendar month during which the combined 12-month rolling total for the NOx, emission rate from Unit IGT3 exceeds 40 tons shall constitute an exceedance. Exceedances shall be reported to the Control Officer in accordance with XIA of Part A.
f. Each calendar month during which the combined 12-month rolling total for the SO₂, emission rate from Unit IGT3, exceeds 40 tons shall constitute an exceedance. Exceedances shall be reported to the Control Officer in accordance with XIA of Part A.
g. Each calendar month during which the combined 12-month rolling total for the CO emission rate from Unit IGT3, exceeds 100 tons shall constitute an exceedance. Exceedances shall be reported to the Control Officer in accordance with XIA of Part A.
h. Each individual day and 12-month rolling total for NOx, SO₂, and CO emission rates in the reporting period shall be included in the semiannual compliance certification required by VII of Part A.
i. Quality Assurance Requirements for Natural Gas Fuel Flowmeters
 i. Each transmitter or transducer shall be calibrated by equipment that has a current certificate of traceability to NIST standards at least once every four calendar quarters in which a unit operated on natural gas for 168 hours or more during each quarter but not less than once every three years. The Permittee shall check the calibration of each transmitter or transducer by comparing its readings to that of the NIST traceable equipment at least once at the following levels: the zero-level, and at least two other upscale levels (e.g., “mid” and “high”), such that the full range of transmitter or transducer readings corresponding to normal unit operation is represented.
 ii. The Permittee shall calculate the accuracy of each transmitter or transducer at each level tested, using the following equation:

\[ACC = \frac{|R - T|}{FS} \times 100 \quad \text{where:} \]

ACC = Accuracy of the transmitter or transducer as a percentage of full-scale.
R = Reading of the NIST traceable reference value (in milliamperes, inches of water, psi, or degrees).
T = Reading of the transmitter or transducer being tested (in
milliamperes, inches of water, psi, or degrees, consistent with the units of measure of the NIST traceable reference value).

FS = Full-scale range of the transmitter or transducer being tested (in milliamperes, inches of water, psi, or degrees, consistent with the units of measure of the NIST traceable reference value).

iii. If each transmitter or transducer meets an accuracy of ±1.0 percent of its full-scale range at each level tested, the fuel flow meter accuracy of 2.0 percent is considered to be met at all levels. If however, one or more of the transmitters or transducers does not meet an accuracy of ±1.0 percent of full-scale at a particular level, then the Permittee may demonstrate that the fuel flow meter meets the total accuracy specification of 2.0 percent at that level by using one of the following alternative methods. If, at a particular level, the sum of the individual accuracies of the three transducers is less than or equal to 4.0 percent, the fuel flow meter accuracy specification of 2.0 percent is considered to be met for that level. Or, if at a particular level, the total fuel flow meter accuracy is 2.0 percent or less, when calculated in accordance with Part 1 of American Gas Association Report No. 3, General Equations and Uncertainty Guidelines, the flow meter accuracy requirement is considered to be met for that level.

iv. If during a transmitter or transducer accuracy test the flow meter accuracy specification of 2.0 percent is not met at any of the levels tested, the Permittee shall repair or replace the transmitter(s) or transducer(s) as necessary until the flow meter accuracy specification has been achieved at all levels. (Note that only transmitters or transducers which are repaired or replaced need to be re-tested; however, the re-testing is required at all three measurement levels to ensure that the flow meter accuracy specification is met at each level).

v. For orifice-, nozzles, and venturi type flow meters, the Permittee shall perform a primary element inspection for damage and corrosion at least once every 12 calendar quarters in which a unit operated on natural gas for 168 hours or more during each quarter but not less than once during the term of this permit. If damage and/or corrosion are found, the Permittee shall replace the flow meter or restore the damaged or corroded flow meter to “as new” condition.

vi. The Permittee shall log in ink, or in an electronic format the date that the calibration and inspection was conducted, the results of the calibration or inspection, and corrective action taken if needed.
ATTACHMENT I: MERCURY STANDARD PROVISIONS

I. APPLICABILITY

This attachment shall only apply to the coal fired boiler identified as Unit I4 to which the ADEQ Consent Order (Docket #A-15-09) signed by ADEQ on February 17, 2009 applies. There are no mercury emission standards included in this attachment, only monitoring, recordkeeping, reporting and testing. Emission standards will be incorporated at a future date when EPA promulgates a Mercury standard or the mercury standard in A.A.C. R18-2-734 becomes applicable. A significant revision submittal will be required to incorporate the EPA or ADEQ mercury standards. The mercury standard in R18-2-734 shall not apply until December 31, 2016. All the conditions in this Attachment are Locally Enforceable Conditions only.

II. GENERAL PROVISIONS

The following standards apply to the maintenance, monitoring, recordkeeping and testing of the mercury monitoring systems associated with Unit I4 in accordance with the February 17, 2009 ADEQ Consent Order. These requirements are in addition to any applicable requirements in the General Provisions in Part A of this permit, unless Attachment I is more stringent.

A. Mailing Address

All requests, reports, applications, submittals, and other communications to the Administrator and Control Officer pursuant to 40 CFR Part 60 shall be submitted to the Control Officer at the following addresses:

Air Program Manager
Pima County Department of Environmental Quality
33 North Stone Avenue, Suite 700.
Tucson, AZ 85701

III SPECIFIC CONDITIONS

A. Emission Limits & Standards

None applicable with this revision per ADEQ Consent Order #A-15-09, Section III.F.

B. Air Pollution Control Requirements

1. The Permittee shall operate and maintain Unit I4, including associated air pollution control equipment and monitoring system, in a manner consistent with safety and good air pollution control practices for reduction of mercury emissions.

Associated air pollution control equipment shall refer to the existing fabric filters (FF) for Unit I4, and good air pollution control practices shall mean the practices that conform to those prescribed in the Operations & Maintenance (O&M) Plan herein referred to as the CAM Plan described in IV.A.2 of Part B
C. Operational & Other Requirements

1. The Permittee shall implement a control strategy that is designed to achieve either 0.0087 lbs/GWh or a 50 percent reduction of total mercury emissions (based on inlet mercury in the coal) from Unit I4 for the time period beginning on January 1, 2011, or 185 calendar days after the Control Officer issues the permit revision and will end on December 31, 2015. The emission rate or percent reduction stated above shall be based on Unit I4’s annual coal use average.

2. The O&M Plan designed to achieve the reductions in III.C.1 above shall be implemented beginning January 1, 2011 or 185 calendar days after the Control Officer issues the permit revision and will end on December 31, 2015.

D. Monitoring, Recordkeeping and Reporting Requirements

Until such time as the Department amends the mercury monitoring, recordkeeping and reporting requirements of R18-2-734.D, or USEPA finalizes a federal mercury monitoring, recordkeeping, and reporting rule, whichever occurs first, the Permittee shall apply the following monitoring, recordkeeping and reporting methods for determining mercury emissions from Unit I4.

1. The Permittee shall perform stack testing for Unit I4 during the calendar year in each of the early mercury reduction years. The early mercury reduction year shall not begin until the later of January 1, 2011, or 185 calendar days after the Control Officer issues the permit revision and shall end on December 31, 2015.

2. The Permittee shall conduct the stack testing downstream of Unit I4 fabric filters while coal is being burned as the main fuel, using EPA Reference Method 29 or other equivalent testing methods approved by the Control Officer. Results of the tests shall be reduced as outlet mercury rate in lbs/mmBtu.

3. If Unit I4 is not operating coal as its main fuel, the stack test shall not be performed until such time as the unit is back operating with coal as its main fuel.

4. If necessary, the Permittee shall conduct coal mercury and heating value analysis at least once each month for each coal type to determine monthly inlet mercury in lbs/mmBtu. For purposes of this Attachment, “inlet mercury” means the average concentration of mercury in the coal burned in Unit I4, as determined by ASTM methods, EPA-approved methods or an alternative method approved by the Control Officer. Should the Permittee decide to utilize analysis of coal samples provided by the coal supplier, an official copy of the analysis from the coal supplier shall be maintained.

5. If necessary to report percent reduction of total mercury emissions, the Permittee shall determine and record for each calendar year Unit I4’s annual percent reduction of mercury emissions, using the inlet and outlet mercury data (based on coal use) obtained from III.D.2 & III.D.4 of this Section. The calendar year average inlet and outlet mercury rate shall be derived based on Unit I4 total calendar year heat input in lbs/mmBtu.

6. The Permittee shall submit annual reports to the Control Officer that contain either the calendar year average outlet mercury rate as determined by III.D.2 of Attachment I, or the calendar year based annual percent reduction of mercury emissions as determined by III.D.5 of Attachment I above. The report shall be submitted by February 15th and shall contain the results for the
preceding year. The first such report shall be submitted by February 15, 2012 for the emitting year of 2011.

The Permittee shall submit to the Control Officer the application for a significant permit revision required by A.A.C. R18-2-734(F) by no later than January 1, 2014, and shall include the following elements in the application:

a. The State Mercury Standard and any amendments adopted by the Director to ensure that the State Mercury Standard is not incompatible with a MACT standard promulgated by EPA.

b. A control strategy for meeting the State Mercury Standard and any amendments adopted by the Director to ensure that the State Mercury Standard is not incompatible with a MACT standard promulgated by EPA.

c. A demonstration that the control strategy is designed to meet the State Mercury Standard and any amendments adopted by the Director to ensure that the State Mercury Standard is not incompatible with a MACT standard promulgated by EPA.

d. A proposal to comply with the State Mercury Standard by December 31, 2016, except as provided in A.A.C. R18-2-734(H), under the following conditions:

(1) For the purposes of applying the exception established in A.A.C. R18-2-734(H), each date specified in that provision shall be increased by three calendar years.

(2) The exception in A.A.C. R18-2-734(G) shall not apply.
I. APPLICABILITY

This section applies to the Non-NSPS generators identified as such in the equipment list.

II. OPERATIONAL LIMITATION

A. The Permittee shall not operate the Non-NSPS emergency generator(s) for more than 500 hours per year on a rolling twelve (12) month total basis.

B. The Permittee shall record the monthly operating hours and recalculate a rolling twelve (12) month total within 10 calendar days following the end of the month. All records shall be maintained for five years. Installation and maintaining of a non-resettable hour meter may be used to satisfy this requirement.

III. OPACITY STANDARD

A. The Permittee shall not cause, allow, or permit to be emitted into the atmosphere from any Non-NSPS stationary rotating machinery, smoke for any period greater than ten consecutive seconds which exceeds 40 percent opacity. Visible emissions when starting cold equipment shall be exempt from this requirement for the first ten minutes.

B. The Permittee shall not cause or permit the effluent from a single emission point, multiple emission point, or a fugitive emissions source to have an average optical density equal to or greater than 60 percent when a cold diesel engine is started or when a diesel engine is accelerated under load as measured in accordance with EPA Method 9.

C. The Permittee shall conduct a visible emissions check on the exhaust stack of each generator at least quarterly while the generator is operating. For the purposes of this permit, a visible emission check is verification that abnormal emissions are not present at the generator stack. The Permittee shall record the date and time of the check, the name of the person conducting the check, the results of the check, and the type of corrective action taken (if required). All records shall be maintained for five years.

D. When requested by the Control Officer, the Permittee shall perform EPA Method 9 visible emissions observations on the generator(s) to demonstrate compliance with the opacity standard.

IV. FUEL LIMITATION

A. The Permittee shall burn only the specified fuel(s) allowed for each generator in the equipment list for this permit. The Permittee shall only fire fuel less than 0.90% by weight of sulfur.

B. In order to demonstrate compliance with the fuel limitation required in IV.A of this Attachment, the Permittee shall maintain records of fuel supplier specifications which verify the sulfur content of the fuel, piped and/or as delivered. All records shall be maintained for five years.
ATTACHMENT K: NSPS EMERGENCY GENERATORS

I. APPLICABILITY

This section applies to the NSPS generators identified as such in the equipment list. All standards are federally enforceable unless indicated otherwise.

II. OPERATIONAL LIMITATION

A. For the purpose of maintenance checks and readiness testing, the Permittee shall not operate the NSPS emergency generator(s) for more than 100 hours per year on a rolling twelve (12) month total basis. There is no time limit on the use of emergency stationary ICE in emergency situations.

B. The Permittee shall record the monthly operating hours and recalculate a rolling twelve (12) month total within 10 calendar days following the end of the month. All records shall be maintained for five years. Installation and maintenance of a run-hour meter that records the run hours for the generator shall satisfy this requirement.

III. OPACITY STANDARD

A. The Permittee shall not cause or permit the effluent from a single emission point or multiple emission point to have an average optical density equal to or greater than 20 percent. Cold diesel engines are exempt for the first 10 minutes.

B. The Permittee shall not cause or permit the effluent from a single emission point, multiple emission point, or a fugitive emissions source to have an average optical density equal to or greater than 60 percent when a cold diesel engine is started or when a diesel engine is accelerated under load as measured in accordance with EPA Method 9.

D. The Permittee shall conduct a visible emissions check on the exhaust stack of each generator at least quarterly while the generator is operating. For the purposes of this permit, a visible emission check is verification that abnormal emissions are not present at the generator stack. The Permittee shall record the date and time of the check, the name of the person conducting the check, the results of the check, and the type of corrective action taken (if required). All records shall be maintained for five years.

E. When requested by the Control Officer, the Permittee shall perform EPA Method 9 visible emissions observations on the generator(s) to demonstrate compliance with the opacity standard.

IV. FUEL LIMITATION

A. The Permittee shall burn only the specified fuel(s) allowed for each generator in the equipment list for this permit. The Permittee shall only fire fuel less than 0.90% by weight of sulfur.

B. In order to demonstrate compliance with the fuel limitation required in IV.A of this Attachment, the Permittee shall maintain records of fuel supplier specifications which verify the sulfur content of the fuel, piped and/or as delivered. All records shall be maintained for five years.
V. OPERATIONAL LIMITATIONS

A. Emission Limitations

1. Certified Emission Limits
 a. New Compression Ignition Internal Combustion Engines (CI ICE) subject to this Attachment shall be certified by the manufacturer at or below the applicable emission standards and shall continue to meet them for the useful life of the engine.
 b. Applicable emission standards are identified in the table below:

<table>
<thead>
<tr>
<th>Maximum Engine Power</th>
<th>Model Year</th>
<th>NMHC+ NOx (g/kW-hr)</th>
<th>CO (g/kW-hr)</th>
<th>PM (g/kW-hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>605 ≤ HP < 750</td>
<td>≥2007</td>
<td>4.0</td>
<td>3.5</td>
<td>0.20</td>
</tr>
</tbody>
</table>

 c. The Permittee must operate and maintain applicable units according to the manufacturer's written instructions or procedures developed by the Permittee that are approved by the engine manufacturer, over the entire life of the engine. [40 CFR 60.4206]

B. Fuel Requirements

1. Beginning October 1, 2007, stationary CI ICE subject to this Attachment that use diesel fuel must use diesel fuel that meets the following requirements on a per-gallon basis: [40 CFR 60.4207(a) & 80.510(a)]
 a. Sulfur content: 500 parts per million (ppm) maximum;
 b. Cetane index or aromatic content, as follows:
 i. A minimum cetane index of 40; or
 ii. A maximum aromatic content of 35 volume percent.

2. Beginning October 1, 2010, stationary CI ICE subject to this Attachment that use diesel fuel must use diesel fuel that meets the following requirements on a per-gallon basis: [40 CFR 60.4207(b) & 80.510(b)]
 a. Sulfur content: 15 ppm maximum;
 b. Cetane index or aromatic content, as follows:
 i. A minimum cetane index of 40; or
 ii. A maximum aromatic content of 35 volume percent.

3. With respect to pre-2011 model year stationary CI ICE subject to this Attachment, the Permittee may petition the Administrator for approval to use remaining non-compliant fuel that does not meet the fuel requirements of V.B.1 & 2 of this Attachment beyond the dates required for the purpose of using up existing fuel inventories. If approved, the petition will be valid for a period of up to 6 months. If additional time is needed, the Permittee shall be required to submit a new petition. [40 CFR 60.4207(c)]
C. Emergency Designation

Emergency stationary ICE may be operated for the purpose of maintenance checks and readiness testing, provided that the tests are recommended by Federal, State, or local government, the manufacturer, the vendor, or the insurance company associated with the engine. Maintenance checks and readiness testing of such units is limited to 100 hours per year. There is no time limit on the use of emergency stationary ICE in emergency situations. The Permittee may petition the Control Officer for approval of additional hours to be used for maintenance checks and readiness testing, but a petition is not required if the Permittee maintains records indicating that Federal, State, or local standards require maintenance and testing of emergency ICE beyond 100 hours per year. Any operation other than emergency operation, and maintenance and testing as permitted in this Attachment, is prohibited.

D. Compliance

1. The Permittee must operate and maintain the applicable stationary CI ICE and control device (if any) according to the manufacturer's written instructions or procedures developed by the Permittee that are approved by the engine manufacturer. In addition, the Permittee may only change those settings that are permitted by the manufacturer. The Permittee must also meet the requirements of 40 CFR part 89, as they apply to the Permittee.

2. For 2007 model year and later stationary CI ICE subject to this Attachment, the Permittee shall comply with the emission standards by purchasing an engine certified to the emission standards V.A.1.b (40 CFR 60.4205(b)), for the same model year and maximum engine power. The engine must be installed and configured according to the manufacturer's specifications. The Permittee shall show compliance with this permit condition by maintaining manufacturer purchase records that show compliance with the emission rates.

VI. Monitoring Requirements

A. The Permittee shall install a non-resettable hour meter on each applicable stationary CI ICE prior to startup of each engine.

VII. Recordkeeping Requirements

A. Diesel Fuel Recordkeeping

The Permittee shall maintain records of fuel supplier certifications that show and verify compliance with all the diesel fuel requirements in II.B of this attachment.

VIII. Testing Requirements

Should the Permittee elect to or be required to conduct performance testing to demonstrate compliance with the applicable standards of this Attachment, the Permittee shall do so in accordance with 40 CFR 60.4212.

IX. Additional Requirements

The General Provisions of 40 CFR 60.1 though 19 apply to applicable sources as indicated in Table 8 of 40 CFR Subpart III except that the Permittee is not required to submit an initial notification.

X. Facility Recordkeeping

All records required by, or generated to verify compliance with this attachment shall be maintained for five years from the date of record.

October 29, 2010
APPENDIX D

Request and Approval of MATS Extension &
Letter on Selection of Regional Haze Limits
Dear Mr. Spencer,

ADEQ is in receipt of your letter dated December 26, 2013, regarding the request for a one year extension for compliance with 40 CFR § 63, Subpart UUUUU – NESHAP: Coal and Oil Fired Electric Utility Steam Generating Units (MATS) for the Tucson Electric Power (TEP) Irvington Generating Station Unit 14. Based upon the issues complicating the potential installation of retrofit emissions technology, including:

1. The still pending BART determination by EPA, expected to be finalized June 2014, which will affect Unit 14. TEP cannot move forward with specific design requirements to meet MATS until BART design requirements are known; and

2. Increased time needed to procure vendors due to the likely reduced number of vendors available because of the competing coal-fired plants nationwide and TEP’s inability to begin the procurement process until the BART determination has been finalized;

ADEQ hereby approves the request for a one year extension of compliance with the MATS, pursuant to 40 CFR § 63.9(c) and § 63.6(i), with a final compliance achievement date of April 16, 2016. The extension is contingent upon the submittal of a permit revision request to incorporate the conditions of the extension of compliance into the Title V permit; a compliance schedule indicating the dates by which each step towards compliance will be reached; and progress reports that indicate the status of each compliance step, submitted within 30 days of each step noted in the compliance schedule. If you have any questions, please feel free to contact me at (602) 771-2288.

Sincerely,

Eric C. Massey, Director
Air Quality Division

Southern Regional Office
400 West Congress Street • Suite 433 • Tucson, AZ 85701
(520) 628-6733

Printed on recycled paper
March 14, 2016

Kathleen Johnson, Director
Enforcement Division (Mail Code ENF-2-1)
USEPA Region 9
75 Hawthorne Street
San Francisco, California 94105-3901

Subject: Selection of Regional Haze Emission Limits
Tucson Electric Power Company- H. Wilson Sundt Generating Station

Dear Director Johnson:

I am pleased to inform you that Tucson Electric Power Company ("TEP"), as part of its resource diversification strategy and commitment to providing safe, reliable and affordable power in an environmentally responsible manner, has ended the use of coal at the H. Wilson Sundt Generating Station ("Sundt") over a year ahead of schedule.

TEP owns and operates Sundt, located in Tucson, Arizona, under Title V Air Quality Permit No. 1052. Sundt Unit 4 is subject to the source-specific federal implementation plan for regional haze codified under 40 CFR §52.145(j). Pursuant to 40 CFR §52.145(j)(11)(i), the plan requires TEP's notification by March 31, 2017, of its selection to comply with either Best Available Retrofit Technology ("BART") or the better-than-BART alternative emission limits.

This letter is to notify you of TEP's decision to comply by no later than December 31, 2017 with the better-than-BART alternative emission limits set forth under 40 CFR §52.145(j)(4). In anticipation of meeting the better-than-BART alternative emission limits, TEP has taken the following steps: 1) In September of 2015, plant operators depleted all on-site coal stock during the plant's last coal-firing event and 2) As of January 29, 2016, TEP notified the Pima County Department of Environmental Quality that Unit 4 will only fire natural gas or natural gas in combination with landfill gas. TEP will utilize the remaining time prior to the December 31, 2017 deadline to ensure that Unit 4 can operate within all applicable emissions limits with an adequate compliance margin.

Should you have any questions, please contact me at (520) 918-8351.

Sincerely,

Erik Bakken, Senior Director, Transmission & Environmental Services

cc: U. Nelson, PDEQ
 S. Porter, PDEQ
 D. Jordan, EPA
 C. McKaughan, EPA
 M. Mansfield, TEP
 C. Spencer, TEP
APPENDIX C

Attachments A, B, and C
Table A-1: Proposed RICE Project Potential to Emit (PTE) Summary

<table>
<thead>
<tr>
<th>Source</th>
<th>Fuel</th>
<th>PM lb/hr</th>
<th>PM10 tpy</th>
<th>PM2.5 tpy</th>
<th>SO2 lb/hr</th>
<th>NOx tpy</th>
<th>CO lb/hr</th>
<th>CO2e lb/hr</th>
<th>VOC tpy</th>
<th>Total HAPs lb/hr</th>
<th>Sulfuric Acid Mist lb/hr</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>RICE 01</td>
<td>Natural Gas</td>
<td>0.012</td>
<td>0.05</td>
<td>3.0</td>
<td>10.9</td>
<td>0.3</td>
<td>1.4</td>
<td>59.1</td>
<td>11.3</td>
<td>25.7</td>
<td>18,078</td>
<td>79,182</td>
</tr>
<tr>
<td>RICE 02</td>
<td>Natural Gas</td>
<td>0.012</td>
<td>0.05</td>
<td>3.0</td>
<td>10.9</td>
<td>0.3</td>
<td>1.4</td>
<td>59.1</td>
<td>11.3</td>
<td>25.7</td>
<td>18,078</td>
<td>79,182</td>
</tr>
<tr>
<td>RICE 03</td>
<td>Natural Gas</td>
<td>0.012</td>
<td>0.05</td>
<td>3.0</td>
<td>10.9</td>
<td>0.3</td>
<td>1.4</td>
<td>59.1</td>
<td>11.3</td>
<td>25.7</td>
<td>18,078</td>
<td>79,182</td>
</tr>
<tr>
<td>RICE 04</td>
<td>Natural Gas</td>
<td>0.012</td>
<td>0.05</td>
<td>3.0</td>
<td>10.9</td>
<td>0.3</td>
<td>1.4</td>
<td>59.1</td>
<td>11.3</td>
<td>25.7</td>
<td>18,078</td>
<td>79,182</td>
</tr>
<tr>
<td>RICE 05</td>
<td>Natural Gas</td>
<td>0.012</td>
<td>0.05</td>
<td>3.0</td>
<td>10.9</td>
<td>0.3</td>
<td>1.4</td>
<td>59.1</td>
<td>11.3</td>
<td>25.7</td>
<td>18,078</td>
<td>79,182</td>
</tr>
<tr>
<td>RICE 06</td>
<td>Natural Gas</td>
<td>0.012</td>
<td>0.05</td>
<td>3.0</td>
<td>10.9</td>
<td>0.3</td>
<td>1.4</td>
<td>59.1</td>
<td>11.3</td>
<td>25.7</td>
<td>18,078</td>
<td>79,182</td>
</tr>
<tr>
<td>RICE 07</td>
<td>Natural Gas</td>
<td>0.012</td>
<td>0.05</td>
<td>3.0</td>
<td>10.9</td>
<td>0.3</td>
<td>1.4</td>
<td>59.1</td>
<td>11.3</td>
<td>25.7</td>
<td>18,078</td>
<td>79,182</td>
</tr>
<tr>
<td>RICE 08</td>
<td>Natural Gas</td>
<td>0.012</td>
<td>0.05</td>
<td>3.0</td>
<td>10.9</td>
<td>0.3</td>
<td>1.4</td>
<td>59.1</td>
<td>11.3</td>
<td>25.7</td>
<td>18,078</td>
<td>79,182</td>
</tr>
<tr>
<td>RICE 09</td>
<td>Natural Gas</td>
<td>0.012</td>
<td>0.05</td>
<td>3.0</td>
<td>10.9</td>
<td>0.3</td>
<td>1.4</td>
<td>59.1</td>
<td>11.3</td>
<td>25.7</td>
<td>18,078</td>
<td>79,182</td>
</tr>
<tr>
<td>RICE 10</td>
<td>Natural Gas</td>
<td>0.012</td>
<td>0.05</td>
<td>3.0</td>
<td>10.9</td>
<td>0.3</td>
<td>1.4</td>
<td>59.1</td>
<td>11.3</td>
<td>25.7</td>
<td>18,078</td>
<td>79,182</td>
</tr>
<tr>
<td>RICE Natural Gas Piping</td>
<td>Natural Gas</td>
<td>178.9</td>
<td>783.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RICE Circuit Breakers</td>
<td>Not Applicable</td>
<td>6.8</td>
<td>29.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total PTE RICE Project</td>
<td></td>
<td>0.1</td>
<td>0.5</td>
<td>29.9</td>
<td>109.4</td>
<td>29.9</td>
<td>109.4</td>
<td>3.2</td>
<td>14.2</td>
<td>591.3</td>
<td>170.0</td>
<td>113.2</td>
</tr>
</tbody>
</table>

Notes:
1. Proposed NOx emission limit for all 10 RICE included in TEP. Application for a Prevention of Significant Deterioration (PSD) Authorization and Significant Revision to Class I Air Quality Permit for Irvington Generating Station, Revised December 2017.

Abbreviations:
- RICE = reciprocating internal combustion engine
- PM = particulate matter
- PM10 = PM less than or equal to 10 micrometers (µm) in diameter
- PM2.5 = PM less than or equal to 2.5 µm in diameter
- SO2 = sulfur dioxide
- NOx = nitrogen oxides
- CO = carbon monoxide
- CO2e = carbon dioxide equivalent
- VOC = volatile organic compounds
- HAPs = hazardous air pollutants
- lb/hr = pounds per hour
- tpy = tons per year
Table A-2: RICE Potential to Emit (PTE) Calculations (Non-Hazardous Air Pollutants/Non-Greenhouse Gas)

Base Parameters:
- Nominal heat input capacity of each RICE[^1]: 154.5 MMBtu/hr
- Horsepower (HP) rating of each RICE[^1]: 26,820 HP
- Number of cold starts per RICE per day[^2]: 5 event
- Duration of each cold start[^1]: 0.5 hrs

Emission Factor

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
<td>7.71E-05</td>
<td>---</td>
<td>2.37</td>
<td>1.8</td>
<td>1.78</td>
<td>1.19E-02</td>
<td>11.9E-01</td>
</tr>
<tr>
<td>PM2.5</td>
<td>3.0</td>
<td>10.9</td>
<td>29.9</td>
<td>109.4</td>
<td>2.7</td>
<td>26.9</td>
<td>86.3</td>
</tr>
<tr>
<td>PM10</td>
<td>2.37</td>
<td>18</td>
<td>109.4</td>
<td>256.9</td>
<td>10.4</td>
<td>104.2</td>
<td>386.6</td>
</tr>
<tr>
<td>CO</td>
<td>4.43</td>
<td>9.1</td>
<td>11.3</td>
<td>19.7</td>
<td>25.7</td>
<td>21.5</td>
<td>153.4</td>
</tr>
<tr>
<td>VOC</td>
<td>4.49</td>
<td>4.3</td>
<td>6.5</td>
<td>8.5</td>
<td>215.4</td>
<td>34.4</td>
<td>120.5</td>
</tr>
<tr>
<td>NOx</td>
<td>1.00E+03</td>
<td>10.3</td>
<td>59.1</td>
<td>259.0</td>
<td>11.1</td>
<td>110.5</td>
<td>152.8</td>
</tr>
<tr>
<td>SO2</td>
<td>2.10E-03</td>
<td>1.5</td>
<td>0.3</td>
<td>1.4</td>
<td>3.2</td>
<td>14.2</td>
<td>170.0</td>
</tr>
<tr>
<td>Sulfuric Acid Mist</td>
<td>3.20E-04</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

Notes:
- Nominal heat input capacity, HP Rating, number of startups per day, and duration of startup per RICE provided in Tucson Electric Power (TEP) Application for a Prevention of Significant Deterioration (PSD) Authorization and Significant Revision to Class I Air Quality Permit for Irvington Generating Station, Revised December 2017.
- Proposed PTE Calculations for PM2.5, PM10, CO, and VOC assume 5 cold startup events per RICE per day. Per vendor information provided by TEP letter Vendor Emissions Performance Specifications, H. Wilson Sundt Generating Station Rice Project, date September 21, 2017, a cold start "...is when the temperature of the catalyst material inside the reactor is close to ambient temperature..." and that cold starts "...are expected after over haul periods or when the engine has not been operated during the last 2 - 3 days."
- SO2 calculated assuming 100 percent of sulfur in fuel forms SO2 and sulfur content of natural gas is 7,500 grains per million cubic feet. SO2 emission factor calculated as:
 \[
 \text{SO}_2 \text{ emission factor} = \frac{7,500 \text{ g}}{1,000 \text{ g/MMBtu}} = 0.0075 \text{ lb/MMBtu}.
 \]
- Sulfuric acid mist calculated assuming 10 percent of sulfur in fuel forms SO2 and reported as sulfuric acid mist. Sulfuric acid mist emission factor calculated as:
 \[
 \text{Sulfuric Acid Mist} = 0.0021 \frac{\text{lb}}{\text{MMBtu}} \times 10 \times 0.062 = 0.00032 \frac{\text{lb}}{\text{MMBtu}}.
 \]
- 40 Code of Federal Regulations (CFR) § 60.4233(e) required NOx emission rate of 1.0 g/HP-hr (40 CFR 60, Table 1).
- Proposed BACT operational emission limits provided in TEP Application for a Prevention of Significant Deterioration (PSD) Authorization and Significant Revision to Class I Air Quality Permit for Irvington Generating Station, Revised December 2017. PM2.5 and PM10 limit based on dispersion modeling analysis.
- Vendor supplied 60 minute average flue gas emission rates after control system startup for 25% to 100% engine loads provided in TEP letter Vendor Emissions Performance Specifications, H. Wilson Sundt Generating Station Rice Project. September 21, 2017.
- Estimated PTE emissions using vendor supplied controlled emission rates for comparative purposes only. Emissions presented are not enforceable by permit limits. Emission calculations assume 5 cold startup events per RICE per day.
- Proposed NOx emission limit for all 10 RICE included in TEP Application for a Prevention of Significant Deterioration (PSD) Authorization and Significant Revision to Class I Air Quality Permit for Irvington Generating Station, Revised December 2017.
<table>
<thead>
<tr>
<th>Abbreviations:</th>
<th>Conversion Factors:</th>
</tr>
</thead>
<tbody>
<tr>
<td>RICE = reciprocating internal combustion engine</td>
<td>1 kg = 2.20462 lb</td>
</tr>
<tr>
<td>MMBtu/hr = million British thermal units per hour</td>
<td>1 lb = 453.592 g</td>
</tr>
<tr>
<td>HP = horsepower</td>
<td>1 ton = 2,000 lbs</td>
</tr>
<tr>
<td>hrs = hours</td>
<td>1 yr = 8,760 hrs</td>
</tr>
<tr>
<td>PM = particulate matter</td>
<td>1 yr = 365 days</td>
</tr>
<tr>
<td>PM10 = PM less than or equal to 10 micrometers (µm) in diameter</td>
<td>1 kg = 2.20462 lb</td>
</tr>
<tr>
<td>PM2.5 = PM less than or equal to 2.5 µm in diameter</td>
<td>1 lb = 453.592 g</td>
</tr>
<tr>
<td>CO = carbon monoxide</td>
<td>1 ton = 2,000 lbs</td>
</tr>
<tr>
<td>CO = carbon dioxide</td>
<td>1 yr = 8,760 hrs</td>
</tr>
<tr>
<td>NOx = nitrogen oxides</td>
<td>1 yr = 365 days</td>
</tr>
<tr>
<td>SO2 = sulfur dioxide</td>
<td>g = grams</td>
</tr>
<tr>
<td>VOC = volatile organic compounds</td>
<td>SO3 = sulfur trioxide</td>
</tr>
<tr>
<td>lb = pounds</td>
<td>H2SO4 = sulfuric acid</td>
</tr>
<tr>
<td>tpy = tons per year</td>
<td>ft³ = cubic feet</td>
</tr>
<tr>
<td>gr = grains</td>
<td>S = sulfur</td>
</tr>
<tr>
<td>hrs = hours</td>
<td>NSPS = New Source Performance Standard</td>
</tr>
<tr>
<td>tpy = tons per year</td>
<td>BACT = Best Available Control Technology</td>
</tr>
<tr>
<td>g = grams</td>
<td>PM = particulate matter</td>
</tr>
<tr>
<td>tpy = tons per year</td>
<td>PM10 = PM less than or equal to 10 µm in diameter</td>
</tr>
<tr>
<td>tpy = tons per year</td>
<td>PM2.5 = PM less than or equal to 2.5 µm in diameter</td>
</tr>
<tr>
<td>1 kg = 2.20462 lb</td>
<td>Conversion Factors:</td>
</tr>
<tr>
<td>1 lb = 453.592 g</td>
<td>1 ton = 2,000 lbs</td>
</tr>
<tr>
<td>1 yr = 8,760 hrs</td>
<td>1 yr = 365 days</td>
</tr>
</tbody>
</table>
Table A-3: RICE Hazardous Air Pollutants (HAPs) Potential to Emit (PTE) Calculations

Base Parameters:

Nominal heat input capacity of each RICE \(^{[1]}\):

<table>
<thead>
<tr>
<th>Hazardous Air Pollutant (HAP) (^{[2]})</th>
<th>Emission Factor (^{[3]}) (lb/MMBtu)</th>
<th>Uncontrolled Emission Rates (per RICE) (^{[4]}) (lb/hr)</th>
<th>Uncontrolled Emission Rates (Total 10 RICE Units) (^{[5]}) (tpy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,3-Butadiene</td>
<td>2.67E-04</td>
<td>4.13E-02</td>
<td>4.13E-01</td>
</tr>
<tr>
<td>2-Methylnaphthalene (^{[5]})</td>
<td>3.32E-05</td>
<td>5.13E-02</td>
<td>5.13E-01</td>
</tr>
<tr>
<td>2,2,4-Trimethylpentane</td>
<td>2.50E-04</td>
<td>3.86E-02</td>
<td>3.86E-01</td>
</tr>
<tr>
<td>Acenaphthene (^{[5]})</td>
<td>1.25E-06</td>
<td>1.93E-04</td>
<td>1.93E-03</td>
</tr>
<tr>
<td>Acenaphthylene (^{[5]})</td>
<td>5.53E-06</td>
<td>8.54E-04</td>
<td>8.54E-03</td>
</tr>
<tr>
<td>Acetaldehyde</td>
<td>8.36E-03</td>
<td>1.29E-00</td>
<td>1.29E-01</td>
</tr>
<tr>
<td>Acrolein</td>
<td>5.14E-03</td>
<td>7.94E-02</td>
<td>7.94E-01</td>
</tr>
<tr>
<td>Benzene</td>
<td>4.40E-04</td>
<td>6.80E-02</td>
<td>6.80E-01</td>
</tr>
<tr>
<td>Benzo(b)fluoranthene (^{[5]})</td>
<td>1.66E-07</td>
<td>2.56E-05</td>
<td>2.56E-04</td>
</tr>
<tr>
<td>Benzo(e)pyrene (^{[5]})</td>
<td>4.15E-07</td>
<td>6.41E-05</td>
<td>6.41E-04</td>
</tr>
<tr>
<td>Benzo(h)pyrene (^{[5]})</td>
<td>6.93E-07</td>
<td>1.07E-04</td>
<td>1.07E-03</td>
</tr>
<tr>
<td>Biphenyl</td>
<td>2.12E-04</td>
<td>3.28E-02</td>
<td>3.28E-01</td>
</tr>
<tr>
<td>Chrysene (^{[5]})</td>
<td>6.93E-07</td>
<td>1.07E-04</td>
<td>1.07E-03</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>3.97E-05</td>
<td>6.13E-03</td>
<td>6.13E-02</td>
</tr>
<tr>
<td>Fluoranthene (^{[5]})</td>
<td>1.11E-06</td>
<td>1.71E-04</td>
<td>1.71E-03</td>
</tr>
<tr>
<td>Fluorene (^{[5]})</td>
<td>5.67E-06</td>
<td>8.76E-04</td>
<td>8.76E-03</td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>4.49E+00</td>
<td>1.97E+01</td>
<td>1.97E+02</td>
</tr>
<tr>
<td>Methanol</td>
<td>2.50E-03</td>
<td>3.86E-01</td>
<td>3.86E-01</td>
</tr>
<tr>
<td>Methylene Chloride</td>
<td>2.00E-05</td>
<td>3.09E-03</td>
<td>3.09E-02</td>
</tr>
<tr>
<td>n-Hexane</td>
<td>1.11E-03</td>
<td>1.71E-01</td>
<td>1.71E-01</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>7.44E-05</td>
<td>1.15E-02</td>
<td>1.15E-01</td>
</tr>
<tr>
<td>PAH (^{[5]})</td>
<td>2.69E-05</td>
<td>4.16E-03</td>
<td>4.16E-02</td>
</tr>
<tr>
<td>Phenanthrene (^{[5]})</td>
<td>1.04E-05</td>
<td>1.61E-03</td>
<td>1.61E-02</td>
</tr>
<tr>
<td>Phenol</td>
<td>2.40E-05</td>
<td>3.71E-03</td>
<td>3.71E-02</td>
</tr>
<tr>
<td>Pyrene (^{[5]})</td>
<td>1.36E-06</td>
<td>2.10E-04</td>
<td>2.10E-03</td>
</tr>
<tr>
<td>Tetrachloroethane</td>
<td>2.48E-06</td>
<td>3.83E-04</td>
<td>3.83E-03</td>
</tr>
<tr>
<td>Toluene</td>
<td>4.08E-04</td>
<td>6.30E-02</td>
<td>6.30E-01</td>
</tr>
<tr>
<td>Vinyl Chloride</td>
<td>1.49E-05</td>
<td>2.30E-03</td>
<td>2.30E-02</td>
</tr>
<tr>
<td>Xylene</td>
<td>1.84E-04</td>
<td>2.84E-02</td>
<td>2.84E-01</td>
</tr>
</tbody>
</table>

Notes:

3. HAP emission factors (except for formaldehyde) from EPA Compilation of Air Pollutant Emission Factors, Volume I: Stationary Point and Area Sources (AP-42), Section 3.2: Natural Gas-Fired Reciprocating Engines, Table 3.2-2. Uncontrolled Emission Factors for 4-Stroke Lean Burn Engines. July 2000.

4. Calculated potential emission rates are based on uncontrolled emission rates (except formaldehyde). Oxidation catalysts will be installed on each RICE for control of volatile organic compounds (VOCs) which will yield reduced actual emissions. Calculated emissions assume each RICE operating maximum 8,760 hours per year.

5. HAPs not included in TEP Application for a Prevention of Significant Deterioration (PSD) Authorization and Significant Revision to Class I Air Quality Permit for Irvington Generating Station, Revised December 2017. TEP letter Response to PDEQ's letter dated September 8, 2017, dated September 19, 2017 stated that these HAPs are part of the single listed HAP of polycyclic organic matter which does not have a single published emission factor. TEP chose not to sum the individually listed HAPs it is unknown if other constituents not listed in Table 3.2-2 of AP-42, but part of polycyclic organic matter may be present. These HAPs have been included in the presented potential to emit calculations for documentation purposes.

6. Proposed VOC Best Available Control Technology (BACT) emission rate of 4.49 lb/hr used to calculate potential formaldehyde emissions. Potential calculated emissions of formaldehyde would exceed the proposed VOC BACT limit using the uncontrolled emission rate from AP-42, Section 3.2, Table 3.2-2.
Abbreviations:
RICE = reciprocating internal combustion engine
MMBtu/hr = million British thermal units per hour
hr = hour
lb = pound
tpy = tons per year

Conversion Factors:
1 ton = 2,000 lbs
1 yr = 8,760 hrs
Table A-4: RICE Greenhouse Gas (GHG) Potential to Emit (PTE) Calculations

Base Parameters:
Nominal heat input capacity of each RICE \([1]\): 154.5 MMBtu/hr

<table>
<thead>
<tr>
<th>GHG</th>
<th>Emission Factor ([2]) kg/MMBtu</th>
<th>Global Warming Potential ([3])</th>
<th>Emission Rate (per RICE) lb/hr</th>
<th>Emission Rate (Total 10 RICE Units) lb/hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO(_2)</td>
<td>53.02</td>
<td>1</td>
<td>1.81(\times)10(^4)</td>
<td>1.81(\times)10(^5)</td>
</tr>
<tr>
<td>CH(_4)</td>
<td>1.00(\times)10(^{-3})</td>
<td>25</td>
<td>3.41(\times)10(^{-1})</td>
<td>3.41(\times)10(^1)</td>
</tr>
<tr>
<td>N(_2)O</td>
<td>1.00(\times)10(^{-4})</td>
<td>298</td>
<td>3.41(\times)10(^{-2})</td>
<td>3.41(\times)10(^0)</td>
</tr>
<tr>
<td>CO(_2)e</td>
<td>---</td>
<td>---</td>
<td>1.81(\times)10(^4)</td>
<td>1.81(\times)10(^5)</td>
</tr>
</tbody>
</table>

Notes:
\([1]\) Nominal heat input capacity of RICE provided in Tucson Electric Power (TEP) Application for a Prevention of Significant Deterioration (PSD) Authorization and Significant Revision to Class I Air Quality Permit for Irvington Generating Station, Revised December 2017.

\([3]\) 40 CFR Part 98, Table A-1.

\([4]\) Annual potential to emit calculated based on each RICE operating a maximum of 8,760 hours per year.

Abbreviations:
RICE = reciprocating internal combustion engine
MMBtu/hr = million British thermal units per hour
GHG = greenhouse gas
CO\(_2\) = carbon dioxide
CH\(_4\) = methane
kg = kilogram
N\(_2\)O = nitrous oxide
lb = pound
hr = hour
CO\(_2\)e = carbon dioxide equivalent

Conversion Factors:
1 kg = 2.20462 lb
1 ton = 2,000 lbs
1 yr = 8,760 hrs
Table A-5: Natural Gas Piping Greenhouse Gas (GHG) Potential to Emit (PTE)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>#</td>
<td>kg/hr/component lb/hr/component</td>
<td>CH₄ lb/hr tpy CO₂e (4)</td>
</tr>
<tr>
<td>Fuel Gas</td>
<td>Natural Gas</td>
<td>Valves in Gas/Vapor Service</td>
<td>60</td>
<td>2.68E-02 5.91E-02</td>
<td>3.55E+00 1.55E+01 8.86E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flanges/Connectors</td>
<td>150</td>
<td>2.5E-04 5.51E-04</td>
<td>8.27E+02 3.62E+01 2.07E+00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pressure Relief Valves</td>
<td>10</td>
<td>1.6E-01 3.53E-01</td>
<td>3.53E+00 1.54E+01 8.82E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>7.16E+00 3.13E+01 1.79E+02</td>
<td>7.83E+02</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

3. Assumed NMOC emission rate equals CH₄ emission rate.

Abbreviations:

- kg = kilogram
- CH₄ = methane
- hr = hour
- tpy = tons per year
- lb = pound
- CO₂e = carbon dioxide equivalent

Conversion Factors:

- 1 kg = 2.20462 lb
- 1 ton = 2,000 lbs
- 1 yr = 8,760 hrs
Table A-6: Circuit Breaker Greenhouse Gas (GHG) Potential to Emit (PTE)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#</td>
<td>lb/component [1]</td>
<td>% Loss/Year [2, 3]</td>
<td>lb/hr</td>
</tr>
<tr>
<td>Circuit Breakers</td>
<td>8</td>
<td>65</td>
<td>0.5%</td>
<td>2.97E-04</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>2.97E-04</td>
</tr>
</tbody>
</table>

Notes:

[3] Proposed Best Available Control Technology (BACT) design standards and work practices consisting of installation and operation of enclosed high-voltage circuit breakers having a vendor-guaranteed leak rate of 0.5% or less per year with density monitor alarm systems.

Abbreviations:

SF₆ = sulfur hexafluoride
hr = hour
lb = pound
tpy = tons per year
% = percent
CO₂e = carbon dioxide equivalent

Conversion Factors:

1 ton = 2,000 lbs
1 yr = 8,760 hrs
ATTACHMENT B: AIR IMPACT ANALYSIS
Irvington Generating Station
Tucson, Arizona

Prepared by
Geosyntec consultants
11811 North Tatum Blvd. Suite P186
Phoenix, Arizona 85028

Project Number: PH0126
February 2018
TABLE OF CONTENTS

1. AIR IMPACT ANALYSIS OVERVIEW .. 1
2. MODELING BASIS... 2
3. AIR IMPACT ANALYSIS RESULTS SUMMARY... 3
 3.1 Background Concentrations .. 4
 3.2 Dispersion Modeling ... 6
 3.3 Emission and Stack Data .. 7
 3.4 Class II Significant Impact Level Modeling Analysis............................... 12
 3.5 PSD Class I Significant Impact Level Modeling Analysis......................... 14
 3.6 Modeling of Ozone Precursors ... 16
 3.7 Additional Impact Analysis ... 16
 3.7.1 Visibility Analysis ... 17
 3.7.2 Class I AQRV Analysis (beyond 50 km of the Project site)......... 20
 3.7.3 Growth Analysis ... 21
 3.7.4 Soil and Vegetation Impacts ... 21
LIST OF TABLES

Table 3-1: SILs, NAAQS, PSD Class I and Class II Increments. (µg/m³)

Table 3-2: Summary of CO, PM₁₀, and PM₂·₅ Background Concentration and Comparison of Total of the Background Concentration and SIL to NAAQS

Table 3-3: Manufacturer Provide Cold Startup CO, PM₁₀, and PM₂·₅ Emission Rates

Table 3-4: Summary of Non-Startup CO, PM₁₀, and PM₂·₅ Emission Rates and Exhaust Parameters for the RICE at 100%, 50%, and 25% Loads

Table 3-5: Calculation of CO, PM₁₀, and PM₂·₅ Emission Rates used in the Modeling Analysis

Table 3-6: Summary of CO, PM₁₀, and PM₂·₅ Emission Rates for Applicable Pollutant-Specific Averaging Period and RICE Operating Loads

Table 3-8: Summary of Load Analysis Emission Rate and Stack Exhaust Parameters (Per RICE)

Table 3-9: Summary of Merged Stack Parameters Used in the Air Dispersion Modeling Analysis

Table 3-10: Summary of Modeled Results of the Load Screening Analysis

Table 3-11: Summary of the Results of the Air Dispersion Modeling Analysis for PSD Class I Increments

Table 3-12: Results from Level I Visibility Analysis

Table 3-13: Screening Concentrations for Vegetation Impacts
1. AIR IMPACT ANALYSIS OVERVIEW

Tucson Electric Power ("TEP" or "the Applicant") has submitted a Prevention of Significant Deterioration (PSD) construction permit application to modify the Irvington Generating Station (IGS). The proposed project includes installation of ten identical natural gas-fired reciprocating internal combustion engines (RICE) manufactured by Wartsila and the retirement of two existing natural-gas fired units, designated “No. 1” and “No. 2.” The project triggers PSD review for carbon monoxide (CO) and particulate matter (PM) with an aerodynamic diameter less than or equal to 10 microns (PM\(_{10}\)) and PM with an aerodynamic diameter less than or equal to 2.5 microns (PM\(_{2.5}\)) and volatile organic compounds (VOC). As a result, an air impact analysis is required to evaluate the project impacts with regard to the National Ambient Air Quality Standards (NAAQS), PSD Class II increments, and PSD Class I increments at the eastern and western units of Saguaro National Park (SNP) and Galiuro Wilderness Area (GWA).

As part of the application, the Applicant submitted an air quality modeling protocol to the Pima County Department of Environmental Quality (PDEQ) on 23 June 2017. The modeling protocol indicated that TEP would perform the air impact analysis as follows:

- Use of the latest version of the United States Environmental Protection Agency (USEPA) American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD), version 16216R air dispersion model to evaluate impacts of the three criteria pollutants for which this project triggers PSD review. Use of the latest version of USEPA’s VISCREEN tool to evaluate visibility impacts at the eastern and western units of SNP and GWA.

- Use of VISCREEN to evaluate the proposed RICE and separately evaluate the shutdown of existing Units 1 and 2, and then to determine impacts on visibility by subtracting the VISCREEN results from shutting down Units 1 and 2 from the VISCREEN results for the RICE.

- Stack height of 150 feet for each RICE.

- Use of the rural dispersion coefficient option in AERMOD based on land-use classifications within 3 kilometers (km) of the project site.
• Evaluation of the 10 RICE exhaust stacks as two groups of merged stacks, with five stacks in each group.

The modeling protocol was reviewed by PDEQ and Region 9 of the USEPA (USEPA Region 9) and was conditionally approved on 1 September 2017, if the following items were addressed in the final project design:

• The entire facility property boundary will be fenced; and

• Each stack in a group of merged stacks will be within one stack diameter of every other stack in the group.

An initial Air Impact Analysis report was also submitted by the applicant to PDEQ at the time that the modeling protocol was received. Based on comments regarding the modeling analysis received from PDEQ and USEPA Region 9, an addendum to the protocol was submitted to PDEQ on 10 October 2017. The addendum to the protocol included the following revisions:

• A revised merged stack approach to merge the 10 stacks into two groups of 3 stacks and two groups of 2 stacks. This merged stack configuration was incorporated to satisfy USEPA’s policy that only stacks within one stack diameter of each other may be merged for modeling purposes.

• The stack height of each RICE was increased from 150 to 160 feet.

• The dispersion coefficients used in AERMOD for the modeling analysis were changed to urban to address comments received from USEPA Region 9, in consultation with USEPA’s Office of Air Quality Planning and Standards (OAQPS), based on the population density of the area in the vicinity of the project.

• PLUVUE II was used to determine visibility impacts from the proposed RICE at the eastern and western units of SNP and GWA rather than VISCREEN to address comments received from USEPA Region 9 and the National Park Service (NPS).

2. MODELING BASIS

A PSD air quality dispersion modeling analysis was prepared for the three criteria pollutants that trigger PSD review, CO, PM\(_{10}\), PM\(_{2.5}\). PSD requirements do not
necessitate an analysis for criteria pollutants that do not trigger PSD review. The project emissions of nitrogen oxides (NOx) were calculated as the emissions from the proposed 10 RICE units minus the emissions from the natural gas-fired units to be retired (No. 1 and No. 2). The resulting NOx emissions are below the NOx significant emission rate of 40 tons per year (TPY). Therefore, the NOx emissions do not trigger New Source Review under PSD regulations and air dispersion modeling was not performed for NOx.

The dispersion modeling analysis included the following components:

- An analysis of existing background monitoring concentrations relative to the NAAQS to confirm that significant impact levels (SILs) can be used in the analysis;

- Dispersion modeling to determine whether ambient impacts caused by the Project emissions exceed the SILs;

- An assessment of the proposed Project’s impacts to soils, vegetation, and visibility;

- An assessment of regional population growth and associated emissions that may be caused by the proposed Project; and

- An assessment of the proposed Project’s potential to affect increments, visibility, or other air quality related values (AQRVs) in Class I areas.

3. AIR IMPACT ANALYSIS RESULTS SUMMARY

This modeling analysis demonstrates that the Project does not result in air quality impacts above the SILs for CO, PM$_{10}$ and PM$_{2.5}$ and does not cause or contribute to an exceedance of any NAAQS or PSD increments for these pollutants. The NAAQS, Class II PSD increments, and Class II SILs are summarized in Table 3-1.
Table 3-1. SILs, NAAQS, PSD Class I and Class II Increments. (µg/m³)

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Averaging Period</th>
<th>Class I SIL</th>
<th>Class II SIL</th>
<th>NAAQS</th>
<th>PSD Class I Increment</th>
<th>PSD Class II Increment</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>8-hour</td>
<td>n/a</td>
<td>500</td>
<td>10,000</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>1-hour</td>
<td>n/a</td>
<td>2,000</td>
<td>40,000</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>PM10</td>
<td>Annual</td>
<td>0.2</td>
<td>1</td>
<td>n/a</td>
<td>4</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>24-hour</td>
<td>0.3</td>
<td>5</td>
<td>150</td>
<td>8</td>
<td>30</td>
</tr>
<tr>
<td>PM2.5</td>
<td>Annual</td>
<td>0.05</td>
<td>0.3</td>
<td>15</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>24-hour</td>
<td>0.27</td>
<td>1.2</td>
<td>35</td>
<td>2</td>
<td>9</td>
</tr>
</tbody>
</table>

The procedures used for the air quality impact analysis (AQIA) comply with USEPA guidance for performing air quality analyses as described in: Chapter C of USEPA’s “New Source Review Workshop Manual”, Draft - October 1990; EPA's "Guideline on Air Quality Models"; 40 C.F.R. Part 51; Appendix W in USEPA’s “AERMOD Users Guide” and related addendums; and EPA’s updated PM2.5 analysis guidance.

3.1 Background Concentrations

In accordance with pre-construction air monitoring requirements¹, an application for a PSD permit must contain an analysis of ambient air quality in the vicinity of the proposed Project for each pollutant subject to PSD review. The definition of existing air quality can be satisfied by air measurements from either a state-operated or private network, or by a pre-construction air monitoring program that is specifically designed to collect data in the vicinity of the proposed source. A source can fulfill the PSD pre-construction air monitoring requirement without conducting on-site monitoring if data collected from existing air monitoring sites are representative of the air quality in the vicinity of the proposed Project site.

The existing air monitoring data must be determined by the reviewing authority to be representative of air quality for the area in which the proposed project would be constructed and operated. The USEPA document “Ambient Monitoring Guidelines for Prevention of Significant Deterioration (PSD)” (EPA-450/4-87-007, May 1987) was reviewed to determine whether the existing air monitoring data is representative of the project. Three major items need to be considered in determining the

¹ 40 CFR 52.21(m)
representativeness of existing data: 1) ambient monitor location, 2) quality of the data, and 3) temporal representativeness (how current the data is). These three criteria are discussed in more detail below.

Each of the monitoring locations selected by the applicant are in the vicinity of the proposed project as shown in Figure 3-1 of the permit application. The selected CO monitor located at 1237 S. Beverly Avenue (referred to as the 22nd and Craycroft site) is approximately 5 km northeast of IGS. The South Tucson PM10 monitor is located approximately 6 km northwest of IGS and the Children’s Park PM2.5 monitor is located approximately 15 km north-northwest of IGS. Based on the wind rose presented in Figure 4-1 of the permit application, emissions from IGS and other sources in the downtown Tucson area would impact these monitors. Therefore, the selected monitors are appropriate for the evaluation.

USEPA maintains data capture statistics for monitors in their design value tables. Data capture for the CO monitor is 99%, 96% for the PM10 monitor, and 95% for the PM2.5 monitor. The selected monitors meet the 80% data capture requirement for PSD monitoring\(^2\) for the most recent three-year period available (2014-2016).

For temporal representativeness, monitoring data from the most recent one-year period preceding submittal of the PSD permit application is preferred. The applicant met this criteria through the use of the three most recent complete years of monitoring data (2014-2016) preceding the year of application submittal. Background concentrations for the pollutants considered in the air dispersion modeling analysis (CO, PM\(_{10}\), and PM\(_{2.5}\)) are presented in Table 3-2.

\(^2\) USEPA (EPA-450/4-87-007, May 1987)
Table 3-2. Summary of CO, PM$_{10}$, and PM$_{2.5}$ Background Concentration and Comparison of Total of the Background Concentration and SIL to NAAQS

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Monitor Location</th>
<th>Averaging Period</th>
<th>Units</th>
<th>Background Conc.</th>
<th>Significant Impact Level (SIL)</th>
<th>Total of Background Conc. and SIL</th>
<th>National Ambient Air Quality Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>1237 S. Beverly</td>
<td>1-hour ppm</td>
<td>1.2</td>
<td>1.752</td>
<td>2.95</td>
<td>358</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8-hour ppm</td>
<td>0.7</td>
<td>0.442</td>
<td>1.14</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>PM$_{10}$</td>
<td>South Tucson</td>
<td>24-hour µg/m3</td>
<td>101</td>
<td>5.02</td>
<td>106</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>PM$_{2.5}$</td>
<td>Children’s Park</td>
<td>24-hour µg/m3</td>
<td>11</td>
<td>1.23</td>
<td>12.2</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NCORE</td>
<td>Annual µg/m3</td>
<td>5.1</td>
<td>0.33</td>
<td>5.4</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

Footnotes:

1. Background Concentrations based on 2014-2016 monitoring period.
2. 40 CFR 51.165(b)(2).
3. Guidance for PM$_{2.5}$ Modeling

Recent USEPA guidance3 indicates that modeled impacts should only be compared to the SIL when the background monitor values, when added to the SILs, are below the NAAQS. As shown in the table above, the combined total of the background monitor value and the SIL is below the respective NAAQS for each pollutant and averaging period. Accordingly, a demonstration that the modeled concentrations are below their respective SIL, would waive the requirement to conduct cumulative modeling.

3.2 **Dispersion Modeling**

AERMOD was used for the air quality analyses, with the regulatory default option set. AERMOD is a steady-state plume dispersion model that simulates transport and dispersion from multiple point, area, or volume sources based on an up-to-date characterization of the atmospheric boundary layer. AERMOD uses Gaussian distributions in the vertical and horizontal planes for stable conditions, and in the

3 Revised Draft Guidance on Significant Impact Levels for Ozone (O$_3$) and PM$_{2.5}$, dated August 18, 2016
horizontal plane for convective conditions; the vertical distribution for convective conditions is based on a bi-Gaussian probability density function of the vertical velocity. For elevated terrain AERMOD incorporates the concept of the critical dividing streamline height, in which flow below this height remains horizontal, and flow above this height rises up and over terrain. AERMOD also uses the advanced PRIME algorithm to account for building wake effects.

The regulatory default option requires the use of terrain elevation data, stack-tip downwash, sequential date checking, and does not permit the use of the model in the SCREEN mode. In the regulatory default mode, pollutant half-life or decay options are not to be employed. The regulatory default option without changes was employed for this AERMOD analysis.

AERMOD incorporates both rural and urban processing options, which affect the dispersion rates used in calculating ground-level pollutant concentrations. Based on the population density in the vicinity of the project site, EPA Region 9 stipulated the use of urban dispersion coefficients. Accordingly, AERMOD modeling was performed using the urban settings.

3.3 Emission and Stack Data

Emissions resulting from engine operation were modeled assuming 8,760 hours of operation per year for each of the ten engines. Wartsila, the manufacturer of the proposed RICE, provided the following CO, PM$_{10}$, and PM$_{2.5}$ cold startup emission rates.

Table 3-3. Manufacturer Provide Cold Startup CO, PM$_{10}$, and PM$_{2.5}$ Emission Rates

<table>
<thead>
<tr>
<th>Startup</th>
<th>CO Emission Rate1 (lb/30 min.)</th>
<th>PM${10}$/PM${2.5}$ Emission Rate1 (lb/30 min.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cold</td>
<td>9.1</td>
<td>1.80</td>
</tr>
</tbody>
</table>

(1) A cold catalyst start is when the temperature of the catalyst material inside the reactor is close to ambient temperature. Cold catalyst starts are expected after over haul periods or when the engine has not been operated during the last 2-3 days.
Cold startups are to be completed within 30 minutes of initiation of the startup. Operational limitations will be incorporated into the permit conditions to require startup to be completed within 30 minutes.

The emission rates during startup conditions are either equal to or greater than the emissions during normal operations; therefore, the startup emission rates were included in the worst-case scenario modeled.

Wartsila, provided the following CO, PM$_{10}$, and PM$_{2.5}$ emission rates and exhaust parameters for non-startup operation of the RICE at various loads for ambient conditions similar to the proposed project location.

Table 3-4. Summary of Non-Startup CO, PM$_{10}$, and PM$_{2.5}$ Emission Rates and Exhaust Parameters for the RICE at 100%, 50%, and 25% Loads

<table>
<thead>
<tr>
<th>RICE Load (%)</th>
<th>CO Emission Rate1 (lb/hr)</th>
<th>PM${10}$/PM${2.5}$ Emission Rate1 (lb/hr)</th>
<th>Exhaust Gas Exit Temperature (deg. F)</th>
<th>Exhaust Gas Flow Rate (lb/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>2.64</td>
<td>1.78</td>
<td>672</td>
<td>64.8</td>
</tr>
<tr>
<td>50</td>
<td>1.85</td>
<td>1.47</td>
<td>801</td>
<td>33.8</td>
</tr>
<tr>
<td>25</td>
<td>1.14</td>
<td>0.96</td>
<td>807</td>
<td>21.0</td>
</tr>
</tbody>
</table>

Footnote:

1 Emission rates are per engine under ambient conditions of 90°F, 9% relative humidity, and altitude of 2,630 ft.

The emission rates provided by Wartsila are not guaranteed. The PM$_{10}$ and PM$_{2.5}$, non-startup emission rates were buffered by a factor of 1.33 to account for potential variability in the compliance test methodology (EPA stack test methods). CO non-startup emission rates were not buffered because the CO compliance test method utilizes an instrumental analyzer method which is not subject to the same variability as the particulate emission sampling methods.

For PM$_{10}$ and PM$_{2.5}$, daily emission rates were based on 5 startups and 21.5 hours of non-startup (normal) emissions. These daily emission rates were used for the 24-hour and annual averaging periods. For the 8-hour averaging period for CO, the emission rate was based on eight hours of startup emissions. For the 1-hour averaging period for CO, the emission rate was based on the combined emissions from two 30-minute
startups. Emission rate calculations for the appropriate pollutant-specific averaging periods for modeling are presented in Table 3-5.

Table 3-5. Calculation of CO, PM\textsubscript{10}, and PM\textsubscript{2.5} Emission Rates used in the Modeling Analysis

| Pollutant | Load (%) | Wartsila Provided Emission Rate (lb/hr) | Buffering Factor | Buffered Emission Rate (lb/hr) | Startup Emission Rate (lb/30 min.) | CO 1-Hour Average Emission Rate1 (lb/hr) | CO 8-Hour Average Emission Rate1 (lb/hr) | PM\textsubscript{10} Average Emission Rate2 (lb/hr) | PM\textsubscript{2.5} Annual Average Emission Rate2 (lb/hr) |
|-----------|----------|--|------------------|-------------------------------|--------------------------------|--|------------------|------------------|------------------|------------------|
| CO | 100 | 2.64 | 1 | 2.64 | 9.1 | 18.20 | 18.20 | -- | -- |
| | 50 | 1.85 | 1 | 1.85 | 9.1 | 18.20 | 18.20 | -- | -- |
| | 25 | 1.14 | 1 | 1.14 | 9.1 | 18.20 | 18.20 | -- | -- |
| PM\textsubscript{10} | 100 | 1.78 | 1.331 | 2.37 | 1.8 | -- | -- | 2.50 | 2.50 |
| | 50 | 1.47 | 1.331 | 1.96 | 1.8 | -- | -- | 2.13 | 2.13 |
| | 25 | 0.96 | 1.331 | 1.28 | 1.8 | -- | -- | 1.52 | 1.52 |
| PM\textsubscript{2.5} | 100 | 1.78 | 1.331 | 2.37 | 1.8 | -- | -- | 2.50 | 2.50 |
| | 50 | 1.47 | 1.331 | 1.96 | 1.8 | -- | -- | 2.13 | 2.13 |
| | 25 | 0.96 | 1.331 | 1.28 | 1.8 | -- | -- | 1.52 | 1.52 |

Footnotes:
1 For CO, the startup emission rate of 9.1 lb/30 min. was assumed for every hour of operation.
2 For PM\textsubscript{10} and PM\textsubscript{2.5} 24-hour average and annual emission rates were calculated based on 21.5 hours of operation at the buffered emission rate and 5 startups per day divided by 24 hours (e.g., ((21.5 x 2.37 lb/hr) + (5 x 1.8 lb/0.5 hr))/24 = 2.5 lb/hr).

A summary of the CO, PM\textsubscript{10}, and PM\textsubscript{2.5} Emission Rates Used in the Modeling Analysis for Varying Operational Loads and Pollutant-Specific Averaging Periods is shown in Table 3-6.
Table 3-6. Summary of CO, PM$_{10}$, and PM$_{2.5}$ Emission Rates for Applicable Pollutant-Specific Averaging Period and RICE Operating Loads

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>NAAQS Averaging Period</th>
<th>RICE Load (%)</th>
<th>Emission Rate (lb/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>1-hour</td>
<td>25</td>
<td>18.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>18.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>18.2</td>
</tr>
<tr>
<td></td>
<td>8-hour</td>
<td>25</td>
<td>18.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>18.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>18.2</td>
</tr>
<tr>
<td>PM$_{10}$</td>
<td>24-hour</td>
<td>25</td>
<td>1.52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>2.13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>2.50</td>
</tr>
<tr>
<td></td>
<td>Annual</td>
<td>25</td>
<td>1.52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>2.13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>2.50</td>
</tr>
<tr>
<td>PM$_{2.5}$</td>
<td>24-hour</td>
<td>25</td>
<td>1.52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>2.13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>2.50</td>
</tr>
<tr>
<td></td>
<td>Annual</td>
<td>25</td>
<td>1.52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>2.13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>2.50</td>
</tr>
</tbody>
</table>

These CO, PM$_{10}$, and PM$_{2.5}$ emission rates for each operating load were used for each RICE in the modeling analysis to determine impacts for pollutant-specific averaging periods.

Exhaust flow, and exhaust temperature may vary with load. Accordingly, the Applicant performed a modeling analysis of various operating loads (a load screening analysis). The stack exhaust parameters used in the modeling analysis for each load condition (25%, 50%, and 100% operation) were calculated using the exhaust temperature and mass flow rates provided by Wartsila. A summary of these calculations is provided in Table 3-7.
Table 3-7. Summary of Calculations of RICE Stack Exhaust Parameters for Each Operating Load.

<table>
<thead>
<tr>
<th>Operating Load (%)</th>
<th>Wartsila Provided Exhaust Gas Mass Flow (lb/s)</th>
<th>Wartsila Provided Exhaust Gas Temp. (°F)</th>
<th>Exhaust Gas Molecular Weight (lb/lb mole)</th>
<th>Air at Standard Conditions (SCFM/lb mole)</th>
<th>Exhaust Flow Rate (ft³/s)</th>
<th>Exit Velocity¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>21.0</td>
<td>704</td>
<td>28.6</td>
<td>385.55</td>
<td>747</td>
<td>34.50</td>
</tr>
<tr>
<td>50</td>
<td>33.8</td>
<td>700</td>
<td>28.6</td>
<td>385.55</td>
<td>1,193</td>
<td>55.15</td>
</tr>
<tr>
<td>100</td>
<td>64.8</td>
<td>629</td>
<td>28.6</td>
<td>385.55</td>
<td>2,058</td>
<td>95.12</td>
</tr>
</tbody>
</table>

Footnote:
¹Based on a proposed stack diameter of 5.3125 feet.

The emission rates by pollutant and averaging period, the exhaust flow rates and the stack exhaust temperatures for the 100%, 50 %, and 25% load levels are presented in the Table 3-8. The modeled stack height and stack diameter for each RICE is 160 feet and 5.3125 feet, respectively.

Table 3-8. Summary of Load Analysis Emission Rate and Stack Exhaust Parameters (Per RICE)

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Load Level (percent)</th>
<th>Emission Rate (lb/hr)</th>
<th>Exhaust Flow (ACFM)</th>
<th>Exhaust Temperature (°F)</th>
<th>Exhaust Velocity (ft/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>25</td>
<td>18.22</td>
<td>44,776</td>
<td>704</td>
<td>34.5</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>18.22</td>
<td>71,733</td>
<td>700</td>
<td>55.1</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>18.22</td>
<td>123,454</td>
<td>629</td>
<td>95.1</td>
</tr>
<tr>
<td>PM₁₀</td>
<td>25</td>
<td>1.52</td>
<td>44,776</td>
<td>704</td>
<td>34.5</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>2.14</td>
<td>71,733</td>
<td>700</td>
<td>55.1</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>2.50</td>
<td>123,454</td>
<td>629</td>
<td>95.1</td>
</tr>
<tr>
<td>PM₂₅</td>
<td>25</td>
<td>1.52</td>
<td>44,776</td>
<td>704</td>
<td>34.5</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>2.14</td>
<td>71,733</td>
<td>700</td>
<td>55.1</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>2.50</td>
<td>123,454</td>
<td>629</td>
<td>95.1</td>
</tr>
</tbody>
</table>
As described in the addendum to the modeling protocol and modeling report, the applicant merged the 10 RICE stacks into 2 groups of 5 stacks. Within each group there are is a cluster of 2 stacks and a cluster of 3 stacks for modeling purposes. The stack merging approach is consistent with EPA policy that stacks within one stack diameter of other stacks may be merged and treated as a single stack for modeling purposes. The merged stack parameters (e.g., exhaust flow and stack diameter) were calculated using the procedures described in EPA 454/R-92-019, Chapter 2-2, Screening Procedures for Estimating the Air Quality Impact of Stationary Sources, Revised. October 1992. A summary of the merged stack parameters used in the load screening analysis is presented in Table 3-9.

Table 3-9. Summary of Merged Stack Parameters Used in the Air Dispersion Modeling Analysis

<table>
<thead>
<tr>
<th>Operating Load (%)</th>
<th>Number of Merged Stacks</th>
<th>Wartsila Provided Exhaust Gas Temperature (°F)</th>
<th>Exhaust Flow Rate (ft³/s)</th>
<th>Equivalent Stack Diameter (ft)</th>
<th>Exit Velocity (ft/s)</th>
<th>Stack Height (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>2</td>
<td>704</td>
<td>1,494</td>
<td>7.42</td>
<td>34.52</td>
<td>160</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>704</td>
<td>2,241</td>
<td>9.09</td>
<td>34.52</td>
<td>160</td>
</tr>
<tr>
<td>50</td>
<td>2</td>
<td>700</td>
<td>2,386</td>
<td>7.42</td>
<td>55.14</td>
<td>160</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>700</td>
<td>3,579</td>
<td>9.09</td>
<td>55.14</td>
<td>160</td>
</tr>
<tr>
<td>100</td>
<td>2</td>
<td>629</td>
<td>4,116</td>
<td>7.42</td>
<td>95.12</td>
<td>160</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>629</td>
<td>6,174</td>
<td>9.09</td>
<td>95.12</td>
<td>160</td>
</tr>
</tbody>
</table>

The depiction of the RICE stacks merged into this described configuration is presented in Figure 2 of Appendix B of Revision 1 of the PSD modeling report submitted by the applicant on 8 November 2017.

3.4 **Class II Significant Impact Level Modeling Analysis**

The load screening analysis was performed using AERMOD for the entire 5-year meteorological data set (2012 through 2016). The results of the load screening analysis for CO, PM₁₀ and PM₂.₅ are presented in Table 3-10.
Table 3-10. Summary of Modeled Results of the Load Screening Analysis

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Averaging Period</th>
<th>25% Load Max. Conc. (µg/m³)</th>
<th>50% Load Max. Conc. (µg/m³)</th>
<th>100% Load Max. Conc. (µg/m³)</th>
<th>Class II Significant Impact Level (µg/m³)</th>
<th>Exceeds Significant Impact Level? (Yes or No)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>1-Hour¹</td>
<td>78.350</td>
<td>55.11</td>
<td>31.111</td>
<td>2000</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>8-Hour¹</td>
<td>34.635</td>
<td>26.58</td>
<td>20.103</td>
<td>500</td>
<td>No</td>
</tr>
<tr>
<td>PM₁₀</td>
<td>24-Hour¹</td>
<td>1.269</td>
<td>1.283</td>
<td>1.120</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Annual¹</td>
<td>0.190</td>
<td>0.194</td>
<td>0.167</td>
<td>1</td>
<td>No</td>
</tr>
<tr>
<td>PM₂.₅</td>
<td>24-Hour²</td>
<td>1.012</td>
<td>1.039</td>
<td>0.925</td>
<td>1.2</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Annual²</td>
<td>0.181</td>
<td>0.182</td>
<td>0.157</td>
<td>0.3</td>
<td>No</td>
</tr>
</tbody>
</table>

Note: Bold text indicates the maximum modeled concentration for each pollutant and averaging period.

Footnotes:
¹Highest concentration over the five-year period (2012-2016).
²Maximum concentration averaged over 5-years.

As shown in the table, the highest predicted 1- and 8-hour average CO concentrations occur when the 10 RICE are modeled operating at 100% load. Maximum PM₁₀ and PM₂.₅ concentrations occur when operating at 50% load. In all cases, the predicted concentrations for each pollutant and each averaging period were below the respective SIL. Based on USEPA guidance⁴, if the highest modeled pollutant concentration for a given project are below the SIL, and the SIL, when added to an appropriate background concentration is below the NAAQS for a given pollutant and averaging period, no further modeling is required to demonstrate compliance with NAAQS or PSD Class II increments. Accordingly, compliance is demonstrated for CO, PM₁₀, and PM₂.₅ NAAQS and PSD Class II Increments and cumulative impact modeling is not required.

⁴ Revised Draft Guidance on Significant Impact Levels for Ozone O₃ and PM₂.₅, dated August 18, 2016
3.5 **PSD Class I Significant Impact Level Modeling Analysis**

USEPA guidance\(^5\) recommends that a proposed project within 100 km of a Class I area perform a modeling analysis to evaluate compliance with PSD Class I Increments and AQRVs. In addition, Federal Land Managers (FLMs) may request that a PSD Class I Increment analysis be completed for large projects within 300 km of a Class I Area. The applicant identified ten Class I Areas within 300 km of the IGS, including: Chiricahua National Monument, Chiricahua Wilderness, Giliuro Wilderness (GWA), Gila Wilderness, Mazatzal Wilderness, Mount Baldy Wilderness, Pine Mountain Wilderness, Saguaro National Park (SNP) (East and West units), Sierra Ancha Wilderness, and Superstition Wilderness. There are no other Class I Areas within 300 km of IGS.

In 1996, during the rulemaking process\(^6\), USEPA proposed 24-hour average and annual PM\(_{10}\) PSD Class I SILs of 0.3 and 0.2 \(\mu g/m^3\), respectively. Although these SILs were never promulgated they have been widely used in subsequent modeling analyses to evaluate project impacts on PSD Class I Areas. As a result, these SILs were used in the analysis for PM\(_{10}\). Based upon USEPA guidance\(^7\), the 24-hour and annual Class I SILs for PM\(_{2.5}\) are 0.27 and 0.05 \(\mu g/m^3\), respectively.

The PSD Class I Area analysis submitted by the applicant considered the two Class I Areas within 100 km of IGS – SNP and GWA. FLMs did not request that a PSD Class I Area Increment analysis be completed for Class I Areas beyond 100 km of IGS.

Modeled receptors for SNP and GWA were obtained from the EPA Region 9 Class I database.

The results of the air dispersion modeling analysis to evaluate compliance with PSD Class I increments are presented in Table 3-11.

\(^5\) EPA Memorandum: Clarification of Prevention of Significant Deterioration Guidance for Modeling Class I Area Impacts, October 19, 1992

\(^6\) July 23, 1996, Federal Register (Volume 61, No. 142, Page 38249

\(^7\) Revised Draft Guidance on Significant Impact Levels for \(O_3\) and PM\(_{2.5}\), dated August 18, 2016
Table 3-11. Summary of the Results of the Air Dispersion Modeling Analysis for PSD Class I Increments

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Averaging Period</th>
<th>Maximum Concentration for 25% Operating Load (µg/m³)</th>
<th>Maximum Concentration for 50% Operating Load (µg/m³)</th>
<th>Maximum Concentration for 100% Operating Load (µg/m³)</th>
<th>Class I Significant Impact Level (µg/m³)</th>
<th>Significant Impact? (Yes or No)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM₁₀</td>
<td>24-Hour</td>
<td>0.053</td>
<td>0.061</td>
<td>0.06</td>
<td>0.3</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Annual</td>
<td>0.006</td>
<td>0.007</td>
<td>0.014</td>
<td>0.2</td>
<td>No</td>
</tr>
<tr>
<td>PM₂.₅</td>
<td>24-Hour</td>
<td>0.039</td>
<td>0.046</td>
<td>0.045</td>
<td>0.27</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Annual</td>
<td>0.006</td>
<td>0.007</td>
<td>0.014</td>
<td>0.05</td>
<td>No</td>
</tr>
</tbody>
</table>

Saguaro National Park – East

PM₁₀	24-Hour	0.035	0.045	**0.048**	0.3	No
	Annual	0.007	0.009	**0.012**	0.2	No
PM₂.₅	24-Hour	0.033	0.042	**0.044**	0.27	No
	Annual	0.007	0.009	**0.012**	0.05	No

Galiuro Wilderness Area

PM₁₀	24-Hour	0.007	**0.009**	0.009	0.3	No
	Annual	**0.001**	0.001	**0.001**	0.2	No
PM₂.₅	24-Hour	0.006	0.007	**0.008**	0.27	No
	Annual	**0.001**	0.001	**0.001**	0.05	No

Note: Bold numbers indicate the maximum modeled concentration for each operating load for a given pollutant.

As shown in Table 3-11, modeled impacts for each pollutant and averaging period are below PSD Class I SILs at each of the selected Class I Areas within 100 km of the proposed project. Accordingly, the applicant was not required to perform a cumulative source modeling analysis considering other increment consuming sources.
3.6 **Modeling of Ozone Precursors**

The USEPA recommends a two-tiered demonstration to address impacts of emissions on ozone (O₃). The first tier involves use of technically credible relationships between precursor emissions and a source’s impacts that may be published in the peer-reviewed literature, developed from modeling that was previously conducted for an area by a source, a governmental agency, or some other entity and that is deemed sufficient, or generated by a peer reviewed reduced form model. The second tier involves application of more sophisticated case-specific chemical transport models (CTMs) (e.g., photochemical grid models) to be determined in consultation with the USEPA Regional Offices and conducted consistent with the USEPA single-source modeling guidance. The USEPA has provided draft guidance on the development of Modeled Emission Rates for Precursors (MERPs) as a tool for Tier I demonstration.⁸ MERPs are screening thresholds for precursor emissions, such as emissions of NOx and VOC, that may result in an increase in ambient O₃ relative to the 8-hour O₃ NAAQS. The screening threshold or SIL for 8-hour O₃ is 1 ppb. This threshold is based on hypothetical single source impact modeling conducted by the USEPA for locations across the US. Therefore, only VOC MERPs were considered as part of this Tier I demonstration. Per the USEPA guidance, the lowest VOC MERP for 8-hour O₃ for the western US is 1,049 tpy, and therefore VOC emissions from the proposed Project will have an insignificant impact on ambient O₃ concentrations.⁹ The proposed Project will be located in Pima County, more than 100 km from the nearest non-attainment areas in Maricopa County and Pinal County. Therefore, an additional demonstration that the proposed Project will not cause or contribute to a violation of the ozone NAAQS is not required.

3.7 **Additional Impact Analysis**

The Prevention of Significant Deterioration (PSD) program requires an additional impact analysis for pollutants that trigger PSD review (for this Project, those pollutants are CO, PM₁₀ and PM₂.₅). The purpose of this analysis is to assess the potential impact the proposed project will have on visibility, soils, and vegetation, as

well as the impact of general commercial, residential, and industrial growth associated with the proposed project.

3.7.1 Visibility Analysis

For a new major source or major modification, an analysis of the anticipated impacts of emissions from the proposed sources on visibility at Class I Areas is required. SNP is within 50 km of the proposed Project site. A near-field screening visibility analysis was initially conducted using USEPA’s screening model VISCREEN.\(^\text{10}\) VISCREEN analyzes two elements for plume visibility against a sky or terrain background in a Class I area -

- Contrast (C\(_p\)): change in light intensity between the background (sky or terrain) and the plume in front; and

- Perceptibility (ΔE): changes in brightness and/or color when looking at sky or terrain.

Screening threshold criteria for a Level 2 VISCREEN analysis are a change in contrast of no more than five percent, and a ΔE not to exceed 2. Additional analyses may be required if screening criteria are exceeded. Upon a detailed review of the initial VISCREEN analysis, the NPS recommended that a refined visibility analysis be conducted using USEPA’s PLUVUE II model.\(^\text{11}\)

3.7.1.1 PLUVUE Analysis

PLUVUE II is a refined plume visibility model designed to predict the transport, atmospheric diffusion, chemical conversion, optical effects, and surface deposition of point and area source emissions. The objective of the PLUVUE II model is to calculate visual range reduction and atmospheric discoloration caused by plumes consisting of primary particles, nitrogen oxides, and sulfur oxides emitted by a single emission source. The PLUVUE II model uses a Gaussian formulation for transport and dispersion.

As requested by the NPS, TEP conducted a refined visibility analysis using PLUVUE II model. For the refined PLUVUE II plume visibility assessment, natural gas-fired

\(^{10}\) https://www.epa.gov/scram/air-quality-dispersion-modeling-screening-models#viscreen

\(^{11}\) https://www3.epa.gov/scram001/userg/other/PluvueUG.pdf
RICE emissions of three optically active pollutants were considered: sulfur dioxide (SO₂), nitrogen oxides (NOₓ) and particulate matter (PM). When released to the atmosphere, a fraction of the nitric oxide (NO) in the NOₓ is transformed to NO₂, which preferentially absorbs shorter wavelength portions of visible light spectrum. The primary optical effect of non-carbonaceous particulate matter is to scatter visible light. Two cases were considered for the refined visibility analysis:

- Case 1: maximum 1-hour average emissions accounting for the rare simultaneous start-up of all 10 RICE units within 30 minutes, plus 30 minutes running at 100% load in the same hour (this is a conservative case since one RICE unit is typically operating at a minimum of 50% load and the simultaneous start of all other engines is not typical); and

- Case 2: emissions from all 10 RICE units at 100% load (this case is more likely, especially in summer, but is still not expected to occur more than about 10% of the time on an annual basis). This emission scenario is the more likely of the two operational scenarios.

Per the FLAG Guidance, emission sources within 50 km of a Class I Area need to perform a modeling evaluation of visible plumes as an Air Quality Related Value. As indicated earlier, SNP, both east and west units, was considered for this refined visibility analysis.

In addition to routine meteorological data, similar to the meteorological data used in the AERMOD analyses, PLUVUE requires the following additional information:

- Atmospheric Stability Category and Holzworth Mixing Depth: These were determined by using the USEPA meteorological processor PCRAMMET¹².

- Temperature Lapse Rate: The temperature lapse rate for each hour was computed from the potential temperature lapse rates for stability categories as specified in the USEPA Industrial Source Complex Model Users Guide: Stability F: 0.035 K/m, Stability E: 0.02 K/m.¹³ For neutral and unstable conditions, the potential temperature lapse rate was set to zero.

¹² https://www3.epa.gov/ttn/scram/metobsdata_procacprogs.htm#pcrammet

¹³ https://www.epa.gov/scram/air-quality-dispersion-modeling-alternative-models#isc3
Background Concentrations: PLUVUE requires the input of background concentrations of O_3, NO_x and NO_2 as well as background visual range. Hourly background pollutant concentrations were taken from a local ADEQ monitor located in Tucson at 22nd and Craycroft.

Background Visual Range: The background visual range is a measure of the amount of ground-level light extinction in the background atmosphere through which the plume is viewed. For the initial screening VISCREEN assessment, the background visual range was set to the natural background of 252 km specified by the NPS, which corresponded to the highest monthly value. PLUVUE II uses the background visual range to calculate the concentration of fine particulate in the atmosphere.

Observer Locations: Per NPS guidance, the current refined visibility analysis consists of 16 combinations of observer locations and terrain features. An observer was placed on each end of the primary line-of-sight looking toward the terrain on which the corresponding observer was assumed to be standing. Details of the geometry for each observer-terrain pair are provided in Appendix C of the Air Dispersion Modeling Report in Support of the PSD Permit Application for IGS. In addition to the primary line-of-sight, other lines of sight through which the plume could potentially be observed within the Class I Area from each observer location were simulated to ensure the simulation of observer-plume-sun geometries that maximize the modeled plume visibility parameters.

Selected Hours for Modeling: VISCREEN was applied using Case 1 emission rates for an observer at SNP East, which is closer to the project sources than SNP West. All other Level 1 screening mode parameters were applied to evaluate the plume visibility parameters C_p and ΔE within the Class I Area for the six stability categories, A, B, C, D, E and F. The maximum values of C_p and ΔE for each stability class indicates modeled visibility parameters were less than the screening-level thresholds of 2.0 for ΔE and $+/-$ 0.05 for C_p for stabilities A, B and C for SNP West and stabilities A and B for SNP East, respectively. Stability classes for which maximum values were less than the thresholds were not included in the refined PLUVUE II analysis. Results of the screening visibility analysis for Case I are provided in Table 3-12.
Table 3-12. Results from Level I Visibility Analysis

<table>
<thead>
<tr>
<th>Stability Class</th>
<th>Saguaro National Park (West)</th>
<th>Saguaro National Park (East)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(C_P)</td>
<td>(\Delta E)</td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0.004</td>
<td>0.515</td>
</tr>
<tr>
<td>C</td>
<td>0.011</td>
<td>1.519</td>
</tr>
<tr>
<td>D</td>
<td>-0.067</td>
<td>6.424</td>
</tr>
<tr>
<td>E</td>
<td>10.732</td>
<td>0.131</td>
</tr>
<tr>
<td>F</td>
<td>16.849</td>
<td>0.235</td>
</tr>
</tbody>
</table>

PLUVUE II was run for nearly 10,000 model iterations, one for each hour for which a plume from the proposed RICE units could pass between the observer and the target. PLUVUE results indicate that the greatest percent of excursion hours for Case 1 at observer W8 is only 0.82% of the daytime hours if the background terrain were black. For a more applicable gray terrain, the frequency is only 0.59%. For Case 2, corresponding maximum black terrain and gray terrain frequencies are slightly lower (0.70% and 0.52%, respectively). TEP estimates that the mode of operation corresponding to Case 1 would be expected to occur less than 1% of the time and that Case 2 is expected to occur less than 10% percent of the time annually.

3.7.2 Class I AQRV Analysis (beyond 50 km of the Project site)

The PSD regulations require that major sources and major modifications which may affect a Class I area (i.e., are generally located within 100 km of a Class I area) must notify the FLMs of the project. The permit applicant typically performs a Class I PSD Increment analysis and an AQRV analysis for any AQRV that the FLMs have identified for the specific Class I Areas. In addition, projects with large emission increases that are located beyond 100 km but within 300 km from a Class I area may also be requested to conduct an impact analysis by the FLMs. Per FLAG Guidance, Class I Areas beyond the FLAG-specified screening distance were excluded from AQRV analysis. The screening distance is determined by adding the permitted short-term emissions (in tons per year based on 24-hour maximum allowable emissions) from proposed routine point sources for \(SO_2 \), \(NO_x \), \(PM_{10} \) and \(H_2SO_4 \). Sum of emissions for these pollutants is 277.59 TPY. This sum does not include the reductions in \(NO_x \) emissions due to the decommissioning of two existing units at the Project site. SNP (east) is located at 10 km from the Project site. Per FLAG Q/D guidance, screening distance equals 277.59/10 = 27.8, which is greater than the screening criterion of 10. Therefore, only SNP was considered for the AQRV analysis.
analysis. A similar analysis for GWA, located at 60 km from the Project site, results in a ratio of 4.62 (277.59/60), which is less than the FLAG Q/D threshold of 10. Therefore, GWA was not included in the AQRV analysis.

3.7.3 Growth Analysis

A growth analysis examines the potential emissions from secondary sources associated with the proposed Project. While these activities are not directly involved in the RICE project, the emissions involve those that can reasonably be expected to occur; for instance, industrial, commercial, and residential growth that will occur in the RICE project area due to the RICE project itself. Secondary emissions do not include any emissions which come directly from a mobile source, such as emissions from the tailpipe of any on-road motor vehicle or the propulsion of a train. Personnel hired by the plant will most likely be drawn from existing regional population, with no appreciable changes in traffic or other growth-associated patterns. Furthermore, any temporary construction jobs are expected to be staffed with workers already in the area; therefore, no additional housing and/or service industry growth is anticipated because of the proposed Project. Likewise, no adverse air quality impacts due to growth are expected.

3.7.4 Soil and Vegetation Impacts

PSD draft guidelines prescribe that the potential impacts of the proposed Project on the soils and vegetation near the proposed Facility should be considered. The highest modeled concentrations of PM$_{10}$, O$_3$ and CO from the proposed Project were compared to the screening concentrations. These concentrations are presented in Table 3-13. As shown, the modeled concentrations are below their screening thresholds. While adverse impacts to soils and vegetation are difficult to quantify, it can be expected that there will be no harmful effects as long as ambient concentrations of criteria pollutants stay below the secondary NAAQS.

Table 3-13. Screening Concentrations for Vegetation Impacts

<table>
<thead>
<tr>
<th>Pollutants</th>
<th>Averaging Period</th>
<th>Maximum Modeled Concentration (μg/m3)</th>
<th>NAAQS (μg/m3)</th>
<th>EPA’s 1980 Screening Concentration (μg/m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM (as PM$_{10}$)</td>
<td>24-hour</td>
<td>1.23</td>
<td>150</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>1-hour</td>
<td>4-hour</td>
<td>8-hour</td>
<td>CO</td>
</tr>
<tr>
<td>----------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td>O₃</td>
<td>0.64</td>
<td>0.16</td>
<td>0.08</td>
<td>Weekly</td>
</tr>
<tr>
<td></td>
<td>None</td>
<td>None</td>
<td>140</td>
<td>10.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,800,000</td>
</tr>
</tbody>
</table>

ATTACHMENT C

TUCSON ELECTRIC POWER IRVINGTON

PREVENTION OF SIGNIFICANT DETERIORATION

BEST AVAILABLE CONTROL TECHNOLOGY ANALYSIS

Table of Contents

I. Approach... 3

II. Scope of the Control Technology Review .. 3

III. RICE Unit BACT Analysis for PM10/PM2.5... 6
 A. BACT Baseline ... 6
 B. Step 1: Identify Available Control Technologies.. 6
 C. Step 2: Eliminate Technically Infeasible Options ... 7
 D. Step 3: Rank Technically Feasible Control Strategies ... 7
 E. Step 4: Evaluate the Most Effective Controls .. 7
 F. Step 5: Establish BACT ... 7

IV. RICE Unit BACT Analysis for CO and VOC .. 10
 A. BACT Baseline ... 10
 B. Step 1: Identify Available Control Technologies.. 10
 C. Step 2: Eliminate Technically Infeasible Options ... 10
 D. Step 3: Rank Technically Feasible Control Strategies ... 10
 E. Step 4: Evaluate the Most Effective Controls .. 11
 F. Step 5: Establish BACT .. 11

V. RICE Unit BACT Analysis for Greenhouse Gas (GHG) .. 15
 A. BACT Baseline ... 15
 B. Step 1: Identify Available Control Technologies... 15
 C. Step 2: Eliminate Technically Infeasible Options .. 19
 D. Step 3: Rank Technically Feasible Control Strategies ... 21
 E. Step 4: Evaluate the Most Effective Controls .. 21
 F. Step 5: Establish BACT .. 23

VI. Natural Gas Piping BACT Analysis for GHG .. 26
 A. BACT Baseline ... 26
 B. Step 1 – Identify Available Control Options.. 26
 C. Step 2 – Eliminate Technically Infeasible Control Options .. 26
 D. Step 3 – Rank Technically Feasible Control Strategies ... 26
E. Step 4 – Evaluate the Most Effective Controls ...27
F. Step 5 – Establish BACT ...27

VII. Circuit Breaker BACT Analysis for GHG ...28
A. BACT Baseline ..28
B. Step 1 – Identify Available Control Options ...28
C. Step 2 – Eliminate Technically Infeasible Control Options ...28
D. Step 3 – Rank Technically Feasible Control Strategies ..28
E. Step 4 – Evaluate the Most Effective Controls ...29
F. Step 5 – Establish BACT ..29

VIII. Summary of BACT Limits ...31

Attachment 1 RBLC Search Data
Attachment 2 Cost Evaluation for Natural Gas Piping
I. Approach

In conducting the Best Available Control Technology (BACT) assessment, PDEQ referenced guidance provided by the United States Environmental Pollution Agency (USEPA) in the New Source Review Workshop Manual (Draft, October 1990). This guidance describes a top-down procedure to determine BACT for an emission unit. Before initiating the BACT analysis for a given emission unit and a given pollutant, PDEQ identified the minimum acceptable level of control allowed under an applicable New Source Performance Standard (NSPS) or National Emission Standard for Hazardous Air Pollutants (NESHAP). This minimum acceptable level of control is commonly called the BACT “baseline”. Next, PDEQ used the five-step “top-down” approach recommended by the USEPA. The five steps of a top-down BACT analysis are:

Step 1: Identify all available control technologies with practical potential for application to the emission unit and regulated pollutant under evaluation;
Step 2: Eliminate all technically infeasible control technologies;
Step 3: Rank remaining control technologies by effectiveness and tabulate a control hierarchy;
Step 4: Evaluate most effective controls and document results; and
Step 5: Select BACT, which will be the most effective practical option not rejected, based on economic, environmental, and/or energy impacts.

PDEQ reviewed the information provided in the Tucson Electric Power (TEP) Prevention of Significant Deterioration (PSD) air permit application BACT documentation and USEPA’s RACT/BACT/LAER Clearinghouse (RBLC) for each pollutant and each proposed emission unit subject to BACT requirements. In addition, where practical, PDEQ independently verified the data and analyses prepared by TEP using USEPA’s RBLC, pollution control vendor information, and information from other regulatory agencies. Attachment 1 includes a summary of the USEPA RBLC information.

II. Scope of the Control Technology Review

The control technology review was conducted based on USEPA guidance including the New Source Review Workshop Manual (Draft, October 1990) and PSD and Title V Permitting Guidance for Greenhouse Gases (March 2011). Both of these documents provide general guidance for determining the scope of the BACT analysis. For new sources subject to PSD, the Clean Air Act and EPA rules allow reviewing authorities discretion to evaluate BACT on a facility-wide basis by considering the overall environmental performance of the facility. However, for existing sources that trigger PSD, 40 CFR §52.21(j)(3) states that BACT applies to each proposed emissions unit at which a net emissions increase would result from the change. The proposed project will cause a net emissions increase in particulate matter (PM) less than 10 microns in diameter (PM10); PM less than two microns in diameter (PM2.5); carbon monoxide (CO); volatile organic compounds (VOC); and greenhouse gases (GHG), specifically carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and sulfur hexafluoride (SF6). This control technology review applies to the proposed emission units and associated pollutants as follows:

- RICE units – PM10, PM2.5, CO, VOC, GHG (CO2, N2O, CH4)
- Natural gas piping – GHG (CH4)
- High voltage circuit breakers – SF6
The first step in conducting the control technology review is to identify all control technologies with potential application to the emission unit and pollutant subject to review.\footnote{New Source Review Workshop Manual, Draft, October 1990 (Section IV).} According to USEPA guidance, the review shall include the following types of control technologies:

- Inherently lower-emitting processes and practices
- Add-on controls; and
- Combinations of inherently lower-emitting processes and add-on controls

Regarding inherently lower-emitting processes and practices with the potential to re-design the source, USEPA has not historically required re-design of the proposed source as part of the BACT review. In the USEPA Environmental Appeals Board (EAB) decision on the Prairie State Generating Station, PSD Appeal No. 05-05, the EAB explained that the facility’s “basic purpose” or “basic design,” as defined by the applicant, is the basis of EPA’s policy on “redefining the source”. The following are excerpts from the Prairie State Generating Station EAB decision support this concept:

“...Congress intended the permit applicant to have the prerogative to define certain aspects of the proposed facility that may not be redesigned through application of BACT and that other aspects must remain open to redesign through the application of BACT. The parties' arguments, properly framed in light of their agreement on this central proposition, thus concern the proper demarcation between those aspects of a proposed facility that are subject to modification through the application of BACT and those that are not.”

“We see no fundamental conflict in looking to a facility's basic "purpose" or to its "basic design" in determining the proper scope of BACT review, nor do we believe that either approach is at odds with past Board precedent.”

This EAB decision was upheld by the United States Court of Appeals, 7th Circuit.\footnote{Sierra Club v. EPA, 499 F.3d 653 (7th Cir. 2007).}

In EPA’s 2011 guidance for conducting control technology reviews for GHG emissions, EPA confirmed the basic concept that a BACT analysis for GHG (as for other pollutants) should not redefine the source’s purpose. This EPA GHG BACT guidance states that the permitting should assess the applicants proposed design to determine which design components are inherent for the proposed purpose and which may be changed for pollution reduction purposes without disrupting the applicant’s basic purpose and that BACT should generally not be applied to regulate the applicant’s purpose or objective for the proposed facility. The guidance also notes that a decision to exclude an option because it would fundamentally redefine the source must be explained and documented in the permit record.\footnote{PSD and Title V Permitting Guidance for Greenhouse Gases, EPA-457/B-11-001, March 2011.}

TEP’s objective for the proposed facility modification is to support a more responsive and sustainable resource portfolio for power production. TEP is expanding solar and wind resources with the goal of supplying at least 30 percent of retail energy load from renewable resources by 2030. Operational challenges associated with renewable resources require TEP to develop systems to manage the intermittency and variability of energy generated by renewable resources. TEP reports recent completion of three energy storage projects designed to partially overcome these operational challenges by providing grid balancing resources. The proposed RICE units will provide capacity and will mitigate power fluctuations.
The fundamental business purpose of the proposed project is to modernize and expand the Irvington Generating Station (IGS) to allow TEP to provide reliable, efficient, grid-balancing resources which can ramp up quickly and provide 100% of the effective load carrying capacity (ELCC) during peak periods of any length. The selection of RICE units to meet this business purpose is discussed in detail in TEP’s 2017 Integrated Resource Plan (IRP). In summary, TEP selected RICE units because they provide flexible, fast-responding power and assist in mitigating power fluctuations associated with renewable resources.4

TEP conducted a Flexible Generation Technology Assessment to support future resource planning efforts. TEP anticipates that approximately 200 megawatt (MW) of additional flexible power generation capacity will be needed in the future to avoid operational issues. Technologies evaluated in TEP’s Flexible Generation Technology Assessment are listed below.

- Aeroderivative simple cycle gas turbines
- Frame simple cycle gas turbine
- Reciprocating engines
- Combined cycle gas turbines
- Solar photovoltaic
- Wind generation
- Battery storage

TEP identified RICE units as the best option to expand generation and integrate renewable resources.5 Because renewable resources produce power intermittently, TEP requires back up generation capability with the following characteristics:

- Fast Start Times – RICE units are capable of being on-line at full load within 5 minutes, providing the fast response that is ideal for cycling operations. RICE can “smooth out” intermittent renewable resource power production and variability.
- Run Time – RICE units operate over a wide range of loads without compromising efficiency and they allow maintenance to be conducted soon after shut down. After shut down, the unit must be down for 5 minutes, at a minimum to allow for gas purging.
- Reduced Operation and Maintenance (O&M) – Cycling the unit has no impact on the wear of the RICE. Unlike combustion turbines, wear on the RICE units is impacted by the hours of operation and not by starts and cycling operations.
- Fast Ramping – At start, RICE units can ramp to full load in 2 minutes on a hot start and in 4 minutes on a warm start. Once the RICE unit is operational, it can ramp between 30% and 100% load in 40 seconds.

According to TEP’s 2017 IRP, TEP conducted a Flexible Generation Technology Assessment which found that the RICE technology is the preferred technology to provide capacity and assist in mitigating renewable energy intermittency and variability.6 A September 2013 report by the National Renewable Energy Laboratory (NREL), noted that challenges associated with renewable energy (i.e., solar and wind power) integration include uncertainty and variability in power supply as well as difficulty balancing electric grid

5 The “2017 Flexible Generation Technology Assessment” prepared for TEP (March 2017), included a review of various technologies including simple cycle gas turbines, reciprocating engines, combined cycle gas turbines, solar photovoltaic, wind generation and batter storage technologies. According to TEP’s 2017 IRP, RICE units were selected to because of their fast response, flexibility, and efficiency.

loads. The presence of wind and solar power sources on electric grids can cause coal or natural gas fired plants to cycle on and off more frequently to accommodate fluctuations in renewable energy power generation. Cycling on and off increases wear on the coal and natural gas fired units and decreases energy efficiency. These challenges can be overcome using a number of integration techniques, including advanced forecasting, energy storage, demand response, and flexible power generation sources such as natural gas combustion turbines and RICE units. Each electric grid is unique and the optimal solutions needed to address integration vary accordingly.

For the reasons described above, the “control options” listed below are not included in Step 1 of the BACT analysis for any pollutant or emission unit because they would fundamentally redefine the source.

- Energy storage including battery storage, liquid air energy storage, flywheel energy storage, compressed air energy storage, pumped hydroelectric storage
- Other power production technologies such as combustion turbines

III. RICE Unit BACT Analysis for PM10/PM2.5

The proposed RICE units are subject to BACT for PM10/PM2.5. This section describes the BACT analysis and resulting BACT limits.

A. BACT Baseline

The proposed RICE units are not subject to PM10 or PM2.5 emission limitations under NSPS or NESHAPS. Therefore, there is no BACT baseline that applies to the RICE units.

B. Step 1: Identify Available Control Technologies

The permit application BACT documentation provided by TEP states that the only available PM10/PM2.5 control technology for natural gas fired RICE units is the use of good combustion practices. The application also states that other technologies in use for control of PM emissions such as filters or electrostatic precipitators have not been applied to and are not potentially applicable to natural gas fired RICE units due to the low concentration of filterable PM in the exhaust stream. A review of the RBLC (Attachment 1) supports the applicant’s claim that electrostatic precipitators or particulate filters have not been installed on natural gas fired engines for PM10 or PM2.5 emission control.

Further review of the RBLC information was conducted to identify whether add-on control options are applied at other natural gas combustion sources (see Attachment 1, Table A). The review provided only one natural gas fired unit with add-on PM control but the facility is permitted to combust natural gas and up to 19% biomass. It is, therefore, not similar to the proposed RICE units and is not considered in the BACT analysis.

Good combustion practices were found to be the only applicable PM control technology for the proposed RICE units.

8 Greenidge Station PSD permit #8-5736-00004/00017 (7 September 2017. Permit review report provided at: http://www.dec.ny.gov/dardata/boss/afs/permits/prr_857360000400017_r0.pdf.)
C. **Step 2: Eliminate Technically Infeasible Options**

The available control technology identified in Step 1 (i.e., good combustion practice) is technically feasible.

D. **Step 3: Rank Technically Feasible Control Strategies**

Only one available control technology has been identified. Ranking is not required.

E. **Step 4: Evaluate the Most Effective Controls**

Good combustion practices do not have adverse economic, energy, or environmental impacts.

F. **Step 5: Establish BACT**

The applicant proposed an emission limit for the proposed RICE units of 2.50 pounds (lbs) of PM10 and PM2.5 per hour, excluding startup and including both condensable and filterable PM. Compliance will be demonstrated through performance testing.

The applicant proposed no numeric PM10 and PM2.5 emission limit for startup events because the demonstration of compliance with respect to a numeric emission limit is not achievable during periods of startup. Startup periods are transient and brief periods which do not allow pollutant measurement using available performance testing methods. In lieu of a numeric emission limit, the following work practices are proposed:

- Minimize the engine’s time spent at idle
- Minimize the engine’s start time to a period need for appropriate and safe loading of the engine not to exceed 30 minutes, after which time non-startup emission limits apply
- Operate and maintain the RICE, including control and monitoring equipment, in a manner consistent with safety and good air pollution control practices for minimizing emissions.

Recent PM10/PM2.5 permit limits for similar RICE units were reviewed to determine whether the proposed emission limits may be established as BACT. A summary of recent limits for similar RICE units is provided in Table 1, below. The Rubart permit contains a non-startup limit that is essentially the same as the proposed PM10/PM2.5 limit of 2.5 pounds/hour. The non-startup PM10/PM2.5 limit for each 10 MW RICE unit at the Rubart facility is 1.31 pounds per hour (per engine). Scaling this limit up to reflect a 19 MW RICE unit gives a PM10/PM2.5 limit of 2.49 pounds per hour (per engine), essentially equivalent to the proposed limit (with rounding). The proposed non-startup limit of 2.5 pounds PM10/PM2.5 per hour based on three 120-minute test runs is acceptable as BACT for non-startup operation.

A review of startup limits for similar RICE units indicates that units at some facilities (i.e., Red Gate10, Lacey-Randall11, and Rubart12) are subject to numeric startup limits. The Port Westward13 and Schofield14 permits do not contain numeric startup limits but the Schofield permit does limit startup duration to 30 minutes. None of the similar RICE units are subject to startup emission testing.

Startup at the RICE units is expected to last less than 30 minutes. Standard performance testing procedures typically require a minimum of three one-hour test runs.15 It is not feasible to test the RICE units during startup because the short startup duration is not expected to produce accurate test results. BACT for startup is therefore: 1) minimize time spent at idle, 2) 30-minute startup duration limit, and 3) operation according to manufacturer specifications for minimizing emissions.

10 Permit issued to South Texas Electric Cooperative, Inc. for the Red Gate Power Plant located in Edinburg, Texas, Permit Numbers 106544, issued 20 December 2013.
12 Permit issued to Mid-Kansas Electric Company, LLC, for the Rubart Station (Source ID No. 0670173), located in Grant County, Kansas. Permit issued 31 March 2016, available at: http://www.kdheks.gov/bar/midkanec/rubart-final-permit-revision.pdf.
13 Permit number 05-2606 issued on 29 March 2013, to Portland General Electric Company for the Port Westward facility located in Clatskanie, Oregon
14 Permit number 0793-01-C issued on 8 September 2016, to Hawaiian Electric Company, Inc. for the Schofield Generating Station, located in Wahiawa, Oahu, Hawaii.
15 For example, testing requirements for stationary spark ignition internal combustion engines include three one-hour test runs (see 40 CFR 60.4244(c)).
<table>
<thead>
<tr>
<th>Facility</th>
<th>State</th>
<th>Permit Date</th>
<th>RICE Model</th>
<th>Number of RICE Units</th>
<th>RICE Capacity (each unit)</th>
<th>PM10/PM2.5 Limits</th>
<th>Operational Limits</th>
<th>Compliance Provisions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red Gate</td>
<td>Texas</td>
<td>Dec. 2013</td>
<td>Wartsila 18V50SG (four-stroke, lean burn)</td>
<td>12</td>
<td>19 MW</td>
<td>Non-startup limit: 3.1 pounds/hour (per engine)</td>
<td>Good combustion practices, use of low ash fuels, and opacity limits of 5% for normal operation and 15% for startup, shutdown and maintenance activities. Startup and shutdown time limited to less than one hour per event.</td>
<td>Fuel records, quarterly visible emissions observations and opacity readings (if visible emissions observed), operating hour records.</td>
</tr>
<tr>
<td>Port Westward</td>
<td>Oregon</td>
<td>Mar. 2013</td>
<td>Wartsila 18V50SG (four-stroke, lean burn)</td>
<td>12</td>
<td>19 MW</td>
<td>5.3 pounds/hour (6-hour average) excludes startup</td>
<td>Clean fuel, good design and operation.</td>
<td>Source test and fuel recordkeeping; testing at 40%, 70% and 100%. Three 120-minute test runs are required. Includes filterable, condensable, and total PM</td>
</tr>
<tr>
<td>Lacey Randall</td>
<td>Kansas</td>
<td>Jan. 2014</td>
<td>Wartsila 20V34SG (four-stroke, lean burn)</td>
<td>10</td>
<td>9.34 MW</td>
<td>Non-startup limit: 2.22 pounds/hour (24-hour average) Startup limit: 2.65 pounds/hour (24-hour average)b</td>
<td>Pipeline natural gas, operate according to manufacturer specifications</td>
<td>Source test at 90% load. Fuel records.</td>
</tr>
<tr>
<td>Rubart Station</td>
<td>Kansas</td>
<td>Mar. 2016</td>
<td>Caterpillar (four-stroke, lean burn)</td>
<td>24</td>
<td>10 MW</td>
<td>Non-startup limit: 1.31 pounds/hour (24-hour average) Startup limit: 1.68 pounds/hour (24-hour average)b</td>
<td>Pipeline natural gas, operate according to manufacturer specifications</td>
<td>Source test at 90% load. Fuel records.</td>
</tr>
<tr>
<td>Schofield</td>
<td>Hawaii</td>
<td>Sept. 2016</td>
<td>Wartsila 20V34SG (four-stroke, lean burn)</td>
<td>6</td>
<td>8.4 MW</td>
<td>Non-startup limit: 2.42 pounds/hour and 0.0582 grains per dry standard cubic foot (12% CO$_2$) (3-hour average)c</td>
<td>Natural gas fuel, operate per manufacturer specifications. Startup limited to 30 minutes per event. Combined startup and low load events limited to 4,380 hours per 12-month rolling.</td>
<td>Source testing EPA Method 201A (filterable portion) and 202 (condensable portion) recordkeeping.</td>
</tr>
</tbody>
</table>

a Equivalent (i.e., scaled up) PM10/PM2.5 limits for a 19 MW engine are: 4.51 pounds/hour (non-startup) and 5.39 pounds/hour (startup).

b Equivalent (i.e., scaled up) PM10/PM2.5 limits for a 19 MW engine are: 2.49 pounds/hour (non-startup) and 3.19 pounds/hour (startup).

c Equivalent (i.e., scaled up) PM10/PM2.5 limits for a 19 MW engine are: 5.47 pounds/hour (non-startup).
IV. RICE Unit BACT Analysis for CO and VOC

The proposed RICE units are subject to BACT for CO and VOC. Because CO and VOC emissions from RICE units are a result of incomplete combustion, and because the control options are the same, the BACT analysis for these two pollutants is combined. This section describes the BACT analysis and resulting BACT limits for CO and VOC.

A. BACT Baseline

The proposed RICE units are subject to the emission standards from 40 CFR §60.4233(e) listed below:

- CO – 2.0 grams per horsepower-hour (g/hp-hr)\(^{16}\)
- VOC – 0.7 g/hp-hr (not including formaldehyde or approximately 1.3 g/hp-hr, including formaldehyde\(^{17}\))

In addition, the proposed RICE units are subject to the emission limits of 40 CFR §63.6600(b) (40 CFR 63, Subpart ZZZZ, Tables 2a and 2b) as follows:

- Reduce CO emissions by 93% (excludes startup) or
- Limit outlet concentration of formaldehyde to 14 parts per by million by volume (ppmv) (excludes startup)
- Minimize the engine’s time spent at idle and minimize the engine’s startup to a period needed for appropriate and safe loading of the engine not to exceed 30 minutes after which time non-startup emission limits apply

The requirements and limits described above are the BACT baseline.

B. Step 1: Identify Available Control Technologies

Available control technologies for CO and VOC are the use of good combustion practices and oxidation catalyst.

C. Step 2: Eliminate Technically Infeasible Options

The available control technologies identified in Step 1 (i.e., good combustion practices and use of an oxidation catalyst) are both technically feasible.

D. Step 3: Rank Technically Feasible Control Strategies

\(^{16}\) This is equivalent to 118 pounds of CO per hour for each of the proposed 26,820 hp RICE units.

\(^{17}\) VOC and formaldehyde emission factors from the USEPA’s *Compilation of Air Pollutant Emission Factors (AP-42)*, Table 3.2-1, indicate that VOC is composed of 46% formaldehyde and 54% other VOC species (i.e., 0.0552 lb/MMBtu formaldehyde divided by 0.12 lb/MMBtu total VOC). Therefore, the equivalent VOC baseline limit is approximately 1.3 g/hp-hr and 77 pounds of total VOC per hour (including formaldehyde).
The top ranked control technology for controlling CO and VOC is the use of an oxidation catalyst combined with good combustion practices. Use of an oxidation catalyst is the next best control technology followed by good combustion practices.18

E. Step 4: Evaluate the Most Effective Controls

Good combustion practices and use of an oxidation catalyst is not associated with significant adverse economic, energy, or environmental impacts.

F. Step 5: Establish BACT

The applicant has proposed an emission limit for the proposed RICE units of 4.43 pounds of CO per hour and 4.49 pounds of VOC per hour, both excluding startup periods.19 The applicant proposes to demonstrate compliance through performance testing using USEPA reference methods.

The applicant proposes no numeric CO or VOC emission limit for startup events, because technological limitations (i.e., brief and transient startup events) on the application of measurement methodology make imposition of an emission standard infeasible. In lieu of emission limitations, the following work practices are proposed for startup events:

- Minimize the engine’s time spent at idle
- Minimize the engine’s start time to a period needed for appropriate and safe loading of the engine not to exceed 30 minutes, after which time non-startup emission limits apply
- Operate and maintain the RICE, including control and monitoring equipment, in a manner consistent with safety and good air pollution control practices for minimizing emissions.

Recent CO and VOC permit limits for similar RICE units were reviewed to assess recent BACT determinations for similar sources. A summary of recent permit limits for similar RICE units is provided in Table 2. All of the limits presented in Table 2 are equal to or greater than the applicant’s proposed limits with the exception of the CO limit at the Port Westward facility in Oregon. The CO limit included in the Port Westward (4.13 pounds CO/hour) permit applies to loads above 90% whereas the applicant’s proposed CO limit (4.43 pounds CO/hour) applies to all loads other than startup. A review of manufacturer emission data indicates that the Port Westward emission limit of 4.13 pounds of CO/hour is achievable for the proposed RICE units at loads above 25%. Therefore, BACT is deemed to be 4.13 pounds of CO per hour during non-startup periods. Testing will be required to demonstrate that the RICE units meet the proposed BACT limit at various loads.

The VOC limits presented in Table 2 are each equal to or greater than the applicant’s proposed VOC BACT limit of 4.49 pounds per hour (excluding startup). The permit for the Port Westward facility includes a VOC permit limit that is the same as the proposed BACT limit (4.49 pounds VOC/hour, excluding startup), except that the Port Westward permit limit is based on a 3-hour rolling average while the proposed permit limit is based on the average of three one-hour test runs. As required for the Port Westward permit, testing will be required to demonstrate that the RICE units meet the proposed BACT limit at various loads. The proposed VOC emission limit for non-startup periods is deemed to be BACT.

18 According to Section 3.2.4.2 of USEPA’s Compilation of Air Pollutant Emission Factors (AP-42), oxidation catalysts typically reduce carbon monoxide emissions from lean burn engines by 90 percent. An accurate percent reduction in CO and VOC emissions from good combustion practices alone was not identified but assumed to be less than 90 percent.

19 The proposed BACT limits are both below the BACT baseline presented in Step 1.
A review of startup limits for similar RICE units indicates that units at some facilities (i.e., Red Gate, Lacey-Randall, and Rubart) are subject to numeric startup limits. The Port Westward and Schofield permits do not contain numeric startup limits but the Schofield permit limits the duration of startup to 30 minutes. The similar RICE units evaluated are not subject to startup emission testing. Startup emission testing is not proposed to meet BACT requirements for the proposed source.

Startup at the RICE units is expected to last less than 30 minutes. Standard performance testing procedures typically require a minimum of three one-hour test runs.20 It is not feasible to test the RICE units during startup because the short startup duration and the transient nature of the RICE operation during startup. BACT for CO and VOC during startup has been determined to be: 1) minimize time spent at idle, 2) limit startup periods to no more than 30-minutes, and 3) operation according to manufacturer specifications for minimizing emissions.

To summarize, BACT for non-startup operations has been established to be 4.43 pounds of CO per hour and 4.49 pounds of VOC per hour. Both limits have an averaging time of 1-hour and compliance is based on the average of three one-hour test runs. In addition, CO and VOC BACT limits for startup are 1) minimize time spent at idle, 2) limit startup periods to no more than 30-minutes, and 3) operation according to manufacturer specifications for minimizing emissions.

20 For example, testing requirements for stationary spark ignition internal combustion engines include three one-hour test runs (see 40 CFR 60.4244(c)).
<table>
<thead>
<tr>
<th>Facility</th>
<th>State</th>
<th>Permit Date</th>
<th>RICE Model</th>
<th>Number of RICE Units</th>
<th>RICE Capacity (each unit) (MW)</th>
<th>CO Limits</th>
<th>VOC Limits</th>
<th>Operational Limits</th>
<th>Compliance Provisions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red Gate</td>
<td>Texas</td>
<td>Dec. 2013</td>
<td>Wartsila 18V50SG (four-stroke, lean burn)</td>
<td>12</td>
<td>19</td>
<td>Non-startup: 5.95 pounds/hour</td>
<td>Non-startup: 5.95 pounds/hour (excludes formaldehyde)</td>
<td>Oxidation catalyst. Good combustion practices. Startup and shutdown time limited to less than one hour per event.</td>
<td>Quarterly concentration and exhaust measurements. Fuel records, quarterly visible emissions observations and opacity readings (if visible emissions observed), operating hour records.</td>
</tr>
<tr>
<td>Port Westward</td>
<td>Oregon</td>
<td>Mar. 2013</td>
<td>Wartsila 18V50SG (four-stroke, lean burn)</td>
<td>12</td>
<td>19</td>
<td>Load 90% and over: 4.13 pounds/hour</td>
<td>4.49 pounds/hour (3-hour rolling average)</td>
<td>Oxidation catalyst. Maintain oxidation catalyst inlet temperature between 450 degrees Fahrenheit (°F) and 1350 °F Clean fuel, good design and operation.</td>
<td>Source test for VOC, continuous emission monitoring system for CO. Testing to be conducted at 40%, 70% and 100%. VOC test twice during permit term. Catalyst inlet temperature monitoring.</td>
</tr>
<tr>
<td>Lacey Randall</td>
<td>Kansas</td>
<td>Jan. 2014</td>
<td>Wartsila 20V34SG (four-stroke, lean burn)</td>
<td>10</td>
<td>9.34</td>
<td>Non-startup: 2.67 pounds/ hour (1-hour average)</td>
<td>Non-startup: 2.67 pounds/ hour (1-hour average)</td>
<td>Oxidation catalyst. Maintain oxidation catalyst inlet temperature between 450 and 1350 °F.</td>
<td>Performance testing. Continuous monitoring of inlet temperature to catalyst. Continuous monitoring of pressure drop across the catalyst (maintain pressure drop within 10 percent of value observed during test).</td>
</tr>
<tr>
<td>Rubart Station</td>
<td>Kansas</td>
<td>Mar. 2016</td>
<td>Caterpillar (four-stroke, lean burn)</td>
<td>24</td>
<td>10</td>
<td>Non-startup: 3.86 pounds/ hour (1-hour average)</td>
<td>Non-startup: 5.82 pounds/ hour (1-hour average)</td>
<td>Oxidation catalyst. Maintain oxidation catalyst inlet temperature between 450 and 1350 °F. Pipeline testing.</td>
<td>Performance testing. Continuous monitoring of inlet temperature to catalyst. Continuous monitoring of pressure drop across the catalyst (maintain pressure drop within 10 percent of value observed during test).</td>
</tr>
<tr>
<td>Facility</td>
<td>State</td>
<td>Permit Date</td>
<td>RICE Model</td>
<td>Number of RICE Units</td>
<td>RICE Capacity (each unit) (MW)</td>
<td>CO Limits</td>
<td>VOC Limits</td>
<td>Operational Limits</td>
<td>Compliance Provisions</td>
</tr>
<tr>
<td>----------</td>
<td>-------</td>
<td>-------------</td>
<td>------------</td>
<td>----------------------</td>
<td>-------------------------------</td>
<td>-----------</td>
<td>------------</td>
<td>---------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Schofield</td>
<td>Hawaii</td>
<td>8 September 2016</td>
<td>Wartsila 20V34SG (four-stroke, lean burn)</td>
<td>6</td>
<td>8.4</td>
<td>Not applicable</td>
<td>3.56 pounds/ hour (as methane, 3-hour average) and 94.1 ppmvd at 15% oxygen.</td>
<td>Oxidation catalyst. Natural gas fuel, operate per manufacturer specifications.</td>
<td>Source testing within 10 percent of peak load, recordkeeping.</td>
</tr>
</tbody>
</table>

a Equivalent (i.e., scaled up) CO limits for a 19 MW engine are: 5.43 pounds/hour (non-startup) and 19.8 pounds/hour (startup).

b Equivalent (i.e., scaled up) VOC limits for a 19 MW engine are: 5.43 pounds/hour (non-startup) and 8.56 pounds/hour (startup).

c Equivalent (i.e., scaled up) CO limits for a 19 MW engine are: 7.33 pounds/hour (non-startup) and 74.5 pounds/hour (startup).

d Equivalent (i.e., scaled up) VOC limits for a 19 MW engine are: 11.1 pounds/hour (non-startup) and 16.0 pounds/hour (startup).

e Equivalent (i.e., scaled up) VOC limits for a 19 MW engine are: 8.05 pounds/hour.
V. RICE Unit BACT Analysis for Greenhouse Gas (GHG)

The GHG BACT analysis described in this section is based on the March 2011 USEPA guidance document entitled “PSD and Title V Permitting Guidance for Greenhouse Gases”. According to this guidance, a GHG BACT review should include consideration of “options that improve the overall energy efficiency of the modification through technologies, processes and practices at the emitting unit.”21 The BACT analysis described in this section includes a review of options that improve overall energy efficiency of the proposed RICE units.

GHG emissions from natural gas fired RICE units include CO₂, CH₄, and N₂O. The emission calculations for the RICE units demonstrate that CO₂ is the GHG emitted in the greatest quantity by far. The focus of this assessment is, therefore, CO₂ emissions.

A. BACT Baseline

The RICE units are not subject to a GHG emission limitation under any NSPS or NESHAP and therefore there is no baseline level of control for GHG emissions from RICE units.

B. Step 1: Identify Available Control Technologies

According to EPA guidance, the first step in the BACT analysis is to identify available control technologies with a practical potential for application to the emissions unit and the regulated pollutant under evaluation. Step 1 of the BACT analysis does not require consideration of technologies that would redefine the nature of the source.22 The proposed project will support the integration of renewal resources by providing reliable, efficient, grid-balancing resources which can ramp up quickly and provide 100% of TEP’s effective load carrying capability during periods of any length. Battery storage has not been considered as a control technology for the proposed facility because the use of battery storage in lieu of the RICE would fundamentally redefine the source. Pairing the RICE with battery storage to reduce the number of proposed RICE would also redefine the source in that the use of battery storage constitutes a different generation method than the proposed project. In addition, battery storage does not provide power indefinitely. The RICE will be available to operate for extended periods of time, should the need arise. Because battery storage does not have the potential to operate indefinitely it may not be considered as an alternative to RICE units. Therefore, the incorporation of battery storage would fundamentally change the nature of the proposed project.

Two available control technologies have been identified, energy efficient combustion and carbon capture and storage (CCS). Using data from the RBLC database, PDEQ conducted a review of emission controls identified as potentially available control technologies for non-emergency RICE engines (see Attachment 1, Table A). These two control technologies are described in detail below.

Control Technology #1 - Energy Efficient RICE Unit Design and Good Operation and Maintenance Practices

The applicant has proposed energy efficient four-stroke, lean burn RICE units designed to minimize fuel combusted per unit of energy output. The units are designed to combust only natural gas. Compared to other commonly used fuels, natural gas fuel generates the lowest quantity of CO₂ per unit of energy output as shown in Table 3 below.²³

<table>
<thead>
<tr>
<th>Fuel</th>
<th>Emission Rate per Unit of Energy (pounds CO₂/ Million British Thermal Units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal (anthracite)</td>
<td>228.6</td>
</tr>
<tr>
<td>Coal (bituminous)</td>
<td>205.7</td>
</tr>
<tr>
<td>Coal (lignite)</td>
<td>215.4</td>
</tr>
<tr>
<td>Coal (subbituminous)</td>
<td>214.3</td>
</tr>
<tr>
<td>Diesel fuel and heating oil</td>
<td>161.3</td>
</tr>
<tr>
<td>Gasoline</td>
<td>157.2</td>
</tr>
<tr>
<td>Propane</td>
<td>139.0</td>
</tr>
<tr>
<td>Natural gas</td>
<td>117.0</td>
</tr>
</tbody>
</table>

Good design, combustion, operation, and maintenance practices are reported to provide a high level of efficiency over time. The proposed design includes use of lean burn, four-stroke, spark ignition engines with air-to-fuel ratio control, turbochargers, an open interface cooling system and a lube oil cooling system.

Control Technology #2 - Carbon capture and storage (CCS)

CCS is considered an add-on control technology in which CO₂ is removed from the exhaust gas stream and stored in underground reservoirs or other geological features. Use of this technology involves capturing, concentrating, and transporting concentrated CO₂ through a pipeline to the storage location.

CO₂ Capture and Concentration – This first step in a CCS system involves increasing the CO₂ concentration in the exhaust stream. Two basic options are available to accomplish this as described below. Figure 1 shows a simple process flow diagram for CO₂ capture and concentration (Figure 5-1 of the PSD permit application).

Figure 1

Simplified Capture and Concentration Process Flow Diagram

i) Pre-Combustion CO₂ Concentration: The CO₂ concentration of exhaust can be increased by using oxygen rather than air to combust natural gas within the engine. This increases the CO₂ concentration of the exhaust but additional gas processing would be needed to remove water and residual oxygen from the exhaust and concentrate the CO₂ further for transportation and storage. According to the applicant, the use of oxygen rather than air for combustion purposes (i.e., “oxy-combustion”) has not been achieved in practice because a RICE unit that is designed to use oxygen rather than air for combustion is not commercially available at this time. PDEQ conducted an online search to identify whether any RICE units capable of utilizing oxygen rather than air for combustion are currently operational to assess whether RICE units firing with oxygen-rich inlet air are technically feasible and did not identify any RICE units operating in this manner. In addition, information available from the Department of Energy’s National Energy Technology Laboratory (NETL) suggests that the use of oxy-combustion technologies for RICE units remains under development. According to NETL, the capital cost, energy consumption and operational challenges of oxygen separation are a challenge to development of cost-competitive oxy-combustion systems. NETL supports several oxy-combustion projects ranging from bench scale testing to verification pilot testing.²⁴ No commercially available systems for RICE applications were identified.

ii) Post-Combustion CO₂ Concentration: CO₂ can be concentrated using several different technologies. Each of these technologies is described within the context of the proposed project below.

Absorption of CO₂ using a chemical solvent such as monoethanolamine (MEA). This process has been demonstrated at a coal fired power plant near Houston, Texas⁸⁵ and at a coal-fired unit at SaskPower’s Boundary Dam Power Station in Saskatchewan, Canada.²⁶ Concerns associated with amine solvents, include corrosion problems, high solvent degradation rates, and the energy needed to regenerate the solvent²⁷ have been identified.

Calcium cycle separation systems have been investigated as a technology for capturing CO₂ and creating limestone. Following CO₂ capture, the limestone can be heated to release the CO₂ in a concentrated stream and reused. This technology is not commercially available for application on RICE units and it is, therefore, not an available technology.

Cryogenic separation involves solidifying CO₂ by cooling. A substantial amount of energy is required for gas compression and cooling.²⁸ In addition, the technology has not been found to be commercially available for RICE units. Therefore, cryogenic separation is not an available technology.

Membrane separation can be used to process natural gas and landfill gas by removing CO₂. A review of membrane separation systems indicates that this technology is appropriate for higher pressure and higher CO₂ concentrations than the exhaust from a RICE unit. The technology is not commercially available for RICE units. Membrane separation is, therefore, not an available technology.

CO₂ Transportation - There is no on-site or nearby storage option for the quantity of CO₂ emitted from the proposed RICE units. Therefore, the CO₂ generated at the RICE units would need to be transported to a storage location. The applicant proposed transport of CO₂ through a pipeline as a potentially available option for transporting CO₂ from the RICE units to a sequestration location. PDEQ conducted a review to assess whether other transport options like truck or rail transport would be potentially available. A typical land transport tanker truck can hold approximately 6,000 kilograms of liquid CO₂.²⁹ To transport the amount of CO₂ potentially generated at the RICE units each month (approximately 60 million kilograms)³⁰ would require 10,000 tanker trucks each month. Clearly, truck transport is not a viable means of transferring CO₂ to the sequestration location. Rail transfer may have higher CO₂ transport capacity but the higher capacity is not significant enough to make rail transport feasible. Pipeline transport is the only potentially available option. Currently no pipeline exists to transport the CO₂ from the site to a sequestration location.

CO₂ Sequestration

²⁶ IEAGHG, Integrated Carbon Capture and Storage Project at SaskPower’s Boundary Dam Power Station, 2015/06, August 2015. (Available at http://ieaghg.org/docs/General_Docs/Reports/2015-06.pdf.)
²⁸ Information obtained from: https://www.co2captureproject.org/pdfs/3_basic_methods_gas_separation.pdf; accessed on 14 September 2017.
³⁰ Potential emissions of CO₂ from the proposed 10 RICE units are 791,000 tons CO₂ per year. This is equivalent to 717,583,129 kilograms per year or 59,798,594 kilograms per month.
Transported CO₂ would need to be permanently stored over the long term. A description of CO₂ storage locations and an assessment of the availability of each location is described in Table 4, below.

Table 4
Control Technology Availability Assessment

<table>
<thead>
<tr>
<th>CO₂ Storage Location</th>
<th>Available Control Technology?</th>
<th>Availability Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Un-mineable coal seam</td>
<td>No</td>
<td>No un-mineable coal seams have been identified in Arizona. The closest coal seam is the San Juan Basin located in northwestern New Mexico. Pilot testing continues at this location but the San Juan Basin is not commercially available storage at this time.¹</td>
</tr>
<tr>
<td>Depleted or depleting oil and gas reservoir</td>
<td>Yes</td>
<td>A CO₂ pipeline that delivers CO₂ for enhanced oil recovery is located in southwestern Colorado. The pipeline delivers CO₂ to the Permian Basin for use in enhanced oil recovery.²</td>
</tr>
<tr>
<td>Basalt and organic rich shale formations</td>
<td>No</td>
<td>No identified basalt formations or organic rich shale basins are located in the vicinity of the proposed project. Also, long-term CO₂ storage in these formations is not commercially available.³</td>
</tr>
<tr>
<td>Deep ocean</td>
<td>No</td>
<td>Deep ocean CO₂ storage is not feasible given the location of the proposed project.</td>
</tr>
<tr>
<td>Saline geologic formation</td>
<td>No</td>
<td>Saline formations within the Colorado Plateau region offer potential long-term CO₂ storage. Pilot studies have been completed for this region but no commercial storage is available.³ In addition, there is potential for CO₂ storage within the Picacho basin but this basin is still under investigation.⁴</td>
</tr>
</tbody>
</table>

As shown above, the only potentially available storage location is a depleting oil reservoir located in southwestern Colorado.

In summary, available control options for the proposed RICE units are:

1. Energy Efficient RICE Unit Design and Good Operation and Maintenance Practices; and
2. CCS using a MEA to concentrate emitted CO₂, transport through a pipeline and storage in a depleted/depleting oil storage reservoir in Colorado
3. Combination of #1 and #2, above.

C. Step 2: Eliminate Technically Infeasible Options
This step involves eliminating control options that are technically infeasible. As described under Step 1, several technologies were eliminated because they were not found to be available control options. Whether CCS is an available control option is questionable. CCS has not been demonstrated or made commercially available for RICE units. The exhaust flowrate and CO₂ emission rate from the proposed RICE units is expected to vary over a wide range of values. According to the preamble for the Standards of Performance for Greenhouse Gas Emissions from New Modified, and Reconstructed Stationary Sources: Electric Utility Generating Units, CCS has been demonstrated as technically feasible for steady-state (i.e., base load) operations but has not been demonstrated for operations such as intermediate load natural gas combined cycle (NGCC) power plants which start and stop frequently. Although the preamble specifically discusses NGCC plants, the same concept applies to the proposed RICE units which are designed to start and stop frequently and to operate at varying loads. The following is an excerpt from the preamble:

“...These differences are important because we are not aware of any pilot-scale CCS projects that have demonstrated how fast and frequent starts, stops, and cycling will impact the efficiency and reliability of CCS. Furthermore, for those periods in which a NGCC unit is operating infrequently, the CCS system might not have sufficient time to startup. During these periods, no CO₂ control would occur. Thus, if the NGCC unit is intended to operate for relatively short intervals for at least a portion of the year, the owner or operator could have to oversize the CCS to increase control during periods of steady-state operation to make up for those periods when no control is achieved by the CCS, leading to increased costs and energy penalties. While we are optimistic that these hurdles are surmountable, it is simply premature at this point to make a finding that CCS is technically feasible for the universe of combustion turbines that are covered by this rule.

Notably, the Department of Energy has not yet funded a CCS demonstration project for a NGCC unit, and no NGCC-with-CCS demonstration projects are currently operational or being constructed in the U.S. In contrast, multiple CCS demonstration projects for coal-fired units are in various stages of development throughout the U.S., and a full-capture system is in operation at the Boundary Dam facility in Canada. See Sections V.E and D above. 31

A review of power plant PSD permits for similar natural gas RICE unit applications indicates that CCS has not been found to be technically feasible. 32 Table 5 provides a summary of the findings.

Table 5
Summary of CCS BACT Review for Similar RICE Units

<table>
<thead>
<tr>
<th>Facility</th>
<th>State</th>
<th>Permit Date</th>
<th>CCS Determined to be Technically Feasible?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red Gate</td>
<td>Texas</td>
<td>Dec. 2013</td>
<td>No1</td>
</tr>
<tr>
<td>Lacey Randall</td>
<td>Kansas</td>
<td>Jan. 2014</td>
<td>No</td>
</tr>
<tr>
<td>Rubart</td>
<td>Kansas</td>
<td>Mar. 2016</td>
<td>No</td>
</tr>
<tr>
<td>Schofield</td>
<td>Hawaii</td>
<td>Sep. 2016</td>
<td>No</td>
</tr>
</tbody>
</table>

32 Data includes BACT reviews conducted for PSD permits for proposed RICE units at power plants (see Attachment 1). Compression engines and small (i.e., less than 5 MW) units are not included in the summary.
1 An economic, energy and environmental impact assessment was conducted for this facility as if it were technically feasible but the permit documentation states CCS is not feasible.

CCS has not been proven for application at RICE units and the feasibility of the technology is highly questionable. In addition, as shown above, no other However, CCS will be assessed in the following steps as if it were technically feasible.

D. Step 3: Rank Technically Feasible Control Strategies

Energy efficient design and good operation and maintenance practices combined with CCS is the top ranked control option. This option is followed by energy efficient design and good operating and maintenance practices. Finally, the third ranked option is CCS using MEA for CO₂ capture and concentration with a pipeline to transport the CO₂ to a depleting oil reservoir for long-term storage.

E. Step 4: Evaluate the Most Effective Controls

As mentioned, the most effective control option (without considering economic or other environmental impacts) is a combination of good combustion, operation and maintenance practices and CCS. The evaluation of this option includes a review of economic, energy, and environmental impacts. For purposes of this evaluation, it is assumed that energy efficient design and good combustion and maintenance practices have no added economic, energy, or environmental impacts.

Economic Impacts

A CCS system includes capital and operating costs for the following system components:

- CO₂ concentration system using MEA
- Compression of CO₂ into a liquid at 2,200 pounds per square inch
- Construction of a pipeline to transport CO₂

The capital cost of the RICE units is estimated to be approximately $1,200 per kilowatt generated.³³ For this 190 MW project the total capital cost of the project (without CCS) is estimated to be approximately $228 million. The applicant identified the CCS capital cost to be $379 million. CCS would more than double the capital cost of the project.

The total annualized cost of a CCS system is estimated to be $96 million per year based on the reported capital cost of $376 million. Potential CO₂ emissions are 384,046 tons per year. This means the cost effectiveness of the CCS system is estimated to be $250 per ton of CO₂ removed.

The costs reported by the applicant were compared to costs presented in other permit support documents for facilities where an economic evaluation was conducted (i.e., CCS was found to be technically feasible) as described in Table 6 below. The costs presented by the applicant are consistent with other cost estimates for CCS systems. Where a CCS system cost increases the capital cost of the project by more than double, CCS has been found to be economically infeasible, as shown in Table 6. Therefore, CCS is not considered to be economically feasible for this project.

Table 6

CCS Cost Summary for Other Facilities

<table>
<thead>
<tr>
<th>Facility</th>
<th>Date Issued</th>
<th>Permit Number</th>
<th>CCS Cost</th>
<th>Estimated Cost</th>
<th>Effectiveness</th>
<th>Economically Feasible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red Gate, Texas¹</td>
<td>Dec. 2013</td>
<td>PSD-TX-1322-GHG</td>
<td>$325 MM capital cost</td>
<td>CCS found to</td>
<td>$54 per ton CO₂ removed</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>increase the capital cost of the entire project by more than 100%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copano Processing²</td>
<td>Mar. 2013</td>
<td>PSD-TX-104949-GHG</td>
<td>$10.9 MM (annualized)</td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Valero McKee Refinery³</td>
<td>Jul. 2013</td>
<td>PSD-TX-861-GHG</td>
<td>$212 MM construction and $24 MM annually</td>
<td>CCS increases the capital cost by more than 180%</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>FGE Power⁴</td>
<td>Apr. 2014</td>
<td>PSD-TX-1364-GHG</td>
<td>$1,508 MM capital cost (including $83 MM for 100 mile 10-inch pipeline) and $322 MM annually</td>
<td>$82 per ton CO₂ removed</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Tenaska Brownsville⁵</td>
<td>Jan. 2015</td>
<td>PSD-TX-1350-GHG</td>
<td>$596 MM capital cost</td>
<td>Capital cost more than doubles cost of project</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>SRP Copper Crossing (proposed)⁶</td>
<td>Draft Jun. 2017</td>
<td>V20672.000</td>
<td>$2,282 MM capital cost $383 MM (annualized)</td>
<td>$137 per ton CO₂ removed</td>
<td></td>
<td>No</td>
</tr>
</tbody>
</table>

6. Draft technical support document for this permit obtained from Pinal County Air Quality Control District, September 2017. The final permit was not issued at the time of this review.

Energy and Environmental Impacts

The applicant reports that the electric power required to compress captured CO₂ within the CCS system is approximately 83,000 MW-hours per year. This represents approximately four (4) percent of the maximum potential power output of the RICE project. In addition, the applicant estimated that more than two (2) billion cubic feet of natural gas per year would be required to generate the steam needed to operate the CO₂
capture and concentration system. This added energy requirement degrades the overall environmental benefit and cost effectiveness of CCS.

The steam and electricity needs associated with CCS for the proposed RICE units would require additional fuel combustion resulting in an increase in GHG and other pollutants. The applicant provided an estimate of the added increases in fuel use requirements for the site. The applicant estimated CCS-related emissions to be 92 tons of nitrogen oxides (NOx) per year and 17 tons of sulfur dioxide (SO2) per year. An additional environmental impact not addressed by TEP is the impact of pipeline construction and operation on wildlife within the vicinity of the pipeline.

Summary

Based on the information presented in this section and considering cost, energy and environmental impacts, CCS is not an effective control option for the proposed RICE units.

F. Step 5: Establish BACT

Based on the significant costs and energy and environmental impacts of the potentially more effective control strategies (i.e., CCS), the applicant proposed the following GHG BACT limits for the proposed RICE units:

- Firing with natural gas,
- Utilizing modern, energy-efficient RICE units
- Good design and proper operation and maintenance of the RICE units
- A limitation of 1,100 pounds of CO2 per MW hour of gross electric output (12-month rolling average)

The applicant proposed a limit for CO2 only, not total CO2 equivalent (CO2e). This approach is acceptable because over 99% of the total GHG emissions from the proposed RICE units is CO2. Therefore, the CO2 limit effectively limits all GHGs from the proposed RICE units.

The proposed GHG BACT limits were compared to BACT limits for similar facilities. Table 7 provides a summary of recent GHG BACT limits for natural-gas fired RICE units. Only the Lacey Randall permit contains a CO2 limit that is more stringent than the proposed limit. The Lacey Randall permit includes a slightly lower CO2 limit (1,080 lb CO2/MW-hour, compared to 1,100 lb CO2/MW-hour) but the Lacey Randall CO2 limit does not include periods of startup while the proposed BACT limit includes all hours of operation. Therefore, the CO2 limit of 1,100 lb of CO2 per MW-hour (gross) is deemed to be BACT.

34 According to 40 CFR 98.6 CO2e is the number of metric tons of CO2 emissions with the same global warming potential as one metric ton of another greenhouse gas and it calculated using Equation A-1 of 40 CFR 98 Subpart A.
35 Complete search results from the RBLC are presented in Attachment 1. An attempt has been made to identify additional facility GHG BACT limits for RICE units used at power plants (i.e., excluding compressor engines and emergency RICE units). The list presented in the table is based on a review of the permit conditions for the identified RICE units.
Table 7
Summary of GHG BACT Limits for Similar RICE Units

<table>
<thead>
<tr>
<th>Facility</th>
<th>State</th>
<th>Permit Date</th>
<th>RICE Model</th>
<th>Number of RICE Units</th>
<th>RICE Capacity (each unit) (MW)</th>
<th>GHG Limits</th>
<th>Operational Limits</th>
<th>Compliance Provisions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red Gate</td>
<td>Texas</td>
<td>Dec. 2013</td>
<td>Wartsila 18V50SG (four-stroke, lean burn)</td>
<td>12</td>
<td>19</td>
<td>1,145 lb CO₂/MW-hour (applies during startup and shutdown)</td>
<td>67,771 hours of total operation per 12-month period.</td>
<td>Monitor fuel flow, Monitor gross energy output for each engine</td>
</tr>
<tr>
<td>Lacey Randall</td>
<td>Kansas</td>
<td>Jan. 2014</td>
<td>Wartsila 20V34SG (four-stroke, lean burn)</td>
<td>10</td>
<td>9.34</td>
<td>Non-startup limits: 9,330 lb CO₂e/hour (annual average); and 1.08 lb CO₂/kilowatt-hour (1,080 lb CO₂/MW-hour) (excludes fuel CO₂) (12-month rolling average)</td>
<td>Maintain emissions units in accordance with manufacturer’s recommendations in a manner consistent with good combustion practices for minimizing emissions at all times.</td>
<td>Initial test to demonstrate compliance with CO₂ and CO₂e emission limits. Monitor carbon content of natural gas.</td>
</tr>
<tr>
<td>Facility</td>
<td>State</td>
<td>Permit Date</td>
<td>RICE Model</td>
<td>Number of RICE Units</td>
<td>RICE Capacity (each unit) (MW)</td>
<td>GHG Limits</td>
<td>Operational Limits</td>
<td>Compliance Provisions</td>
</tr>
<tr>
<td>--------------</td>
<td>--------</td>
<td>-------------</td>
<td>--</td>
<td>----------------------</td>
<td>-------------------------------</td>
<td>---</td>
<td>--</td>
<td>----------------------</td>
</tr>
<tr>
<td>Rubart</td>
<td>Kansas</td>
<td>Mar. 2016</td>
<td>Caterpillar (four-stroke, lean burn)</td>
<td>24</td>
<td>10</td>
<td>Non-startup Limit: 10,692 lb CO\textsubscript{2}e/hour (annual average)</td>
<td>Select the most efficient engine that meets the facility’s needs.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Startup Limit: 10,476 lb CO\textsubscript{2}e/hour (annual average)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Startup and Non-startup Limit: 1.25 lb CO\textsubscript{2} per kW-hour (1,250 lb CO\textsubscript{2}/MW-hour) (annual average)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schofield</td>
<td>Hawaii</td>
<td>8 September</td>
<td>Wartsila 20V34SG (four-stroke, lean burn)</td>
<td>6</td>
<td>8.4</td>
<td>1,700 lb GHG per MW-hour (gross), average over 12-months</td>
<td>Operate and maintain engines per manufacturer specifications.</td>
<td>Monthly emission calculations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
VI. Natural Gas Piping BACT Analysis for GHG

This section describes the BACT review conducted for GHG (i.e., CH₄) emissions from natural gas piping at the proposed project.36 The applicant estimated the natural gas piping system components to include:

- 60 valves in gas/vapor service
- 10 pressure relief valves
- 150 flanges/connectors

The total GHG mass emissions from these components are estimated to be 31.3 tons per year.

A. BACT Baseline

There are no state, local, or federal regulations that apply to GHG emissions from natural gas piping at the proposed Project and therefore no BACT baseline for this project exists.

B. Step 1 – Identify Available Control Options

Only one control option has a practical potential for application to control GHG emissions from natural gas piping, a leak detection and repair (LDAR) program. An LDAR program is designed to identify leaks and facilitate repair. It is a work practice that includes periodic monitoring to identify and repair leaks in an expeditious manner. Two LDAR options are available:

- Audio, visual, olfactory (AVO) leak detection; and
- Instrumental leak detection

C. Step 2 – Eliminate Technically Infeasible Control Options

Both of the potential control options are technically feasible.

D. Step 3 – Rank Technically Feasible Control Strategies

The LDAR option with the highest control efficiency is based on instrumental leak detection. According to USEPA data37, control efficiencies for volatile organic compounds (VOC)38 associated with an instrumental LDAR program are:

- 96% control for valves;
- 81% control for flanges and other connections; and
- 0% for pressure relief valves

These efficiencies are based on instrumental monitoring with a 500 part-per-million VOC leak repair threshold.

36 Pipeline quality natural gas is composed of 95 to 98 percent CH₄ (see: https://www.epa.gov/natural-gas-star-program/overview-oil-and-natural-gas-industry). For BACT assessment purposes, it is assumed that GHG emissions from natural gas piping are CH₄.

38 The GHG, CH₄, is not classified as a VOC but the instrumental LDAR removal efficiency for CH₄ is expected to be similar to that of VOC.
The LDAR option with the second highest control efficiency is based on AVO leak detection. AVO monitoring is possible because an odorant is added to pipeline natural gas for safety purposes. Literature sources indicate that an AVO LDAR program may have a VOC control efficiency between 93% and 97%.39.

E. Step 4 – Evaluate the Most Effective Controls

The most effective control option is evaluated as described below.

Economic Impacts

The applicant presented an evaluation of cost effectiveness of instrumental LDAR. According to the application, the cost of instrumental LDAR is $65,000 per year40 and the cost effectiveness of instrumental LDAR is $10,000 per ton of GHG removed (mass basis) and $400 per ton of GHG removed on a CO₂e basis. These costs were re-calculated to evaluate their accuracy. Attachment 2 contains the details of the LDAR cost effectiveness evaluation. A summary of the costs and cost effectiveness values from Attachment 2 is provided in Table 8, below.

<table>
<thead>
<tr>
<th>Control</th>
<th>Annual Cost ($/year)</th>
<th>Cost Effectiveness - Mass ($/ton GHG)</th>
<th>Cost Effectiveness – CO₂e ($/ton CO₂e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrumental LDAR Program</td>
<td>$72,911</td>
<td>$4,853</td>
<td>$194</td>
</tr>
<tr>
<td>AVO LDAR Program</td>
<td>$34,376</td>
<td>$3,661</td>
<td>$146</td>
</tr>
</tbody>
</table>

The costs presented in the table above indicate that the AVO LDAR program is more cost-effective than an instrumental LDAR program.

Energy and Environmental Impacts

Energy and environmental impacts are expected to be the same for both control options.

F. Step 5 – Establish BACT

The cost effectiveness evaluation provided in Step 4 indicates that an AVO LDAR program is more cost effective than an instrumental LDAR program. Based on regulatory agency documentation, the energy and environmental impacts are approximately equivalent. BACT for natural gas piping is, therefore, determined to be an AVO LDAR program.

The applicant proposed daily AVO monitoring and a schedule to complete component repairs within 15 days. A review of permits for similar operations indicates that only the permit for the Red Gate facility in Edinburg, Texas contains LDAR requirements. A summary of the permit requirements for the Red Gate facility is presented below:

- An AVO monitoring program is required to be implemented for detecting leaks in natural gas piping components, including valves and flanges.
- Daily monitoring is required
- Any component found to be leaking during AVO monitoring shall be repaired within 15 days.
- Records of annual and monthly AVO monitoring results must be maintained on site.

The permit requirements for the Red Gate facility listed above are established as BACT for the proposed facility.

VII. Circuit Breaker BACT Analysis for GHG

This section describes the BACT review conducted for GHG emissions from proposed high voltage circuit breakers. Circuit breakers contain the GHG SF₆ and are a source of potential GHG leaks.

A. BACT Baseline

There are no state, local, or federal regulations that apply to GHG emissions from proposed circuit breakers and therefore no BACT baseline for these units exists.

B. Step 1 – Identify Available Control Options

Two control options are available for reducing SF₆ emissions from circuit breakers. They are:

- Use a non-GHG dielectric material
- Use circuit breakers designed to minimize leaks and equipped with a leak detection system

C. Step 2 – Eliminate Technically Infeasible Control Options

According to the application, use of an alternative dielectric material in the high voltage circuit breakers is not technically feasible because there are no commercially available alternatives with adequate performance capabilities. This is consistent with an independent online search of alternatives. According to a 3M™ presentation given during a January 2017 workshop for SF₆ emission reduction strategies, research and development into the use of alternatives to SF₆ continues.

D. Step 3 – Rank Technically Feasible Control Strategies

The highest-ranked technically feasible control option is the use of circuit breakers designed to minimize leaks and equipped with a leak detection system.

E. **Step 4 – Evaluate the Most Effective Controls**

The use of low-leak circuit breakers and a leak detection system is not associated with any adverse economic, energy, or environmental impacts.

F. **Step 5 – Establish BACT**

The applicant proposed the following BACT limitations for SF$_6$ emissions from circuit breakers:

- Vendor-guaranteed leak rate of 0.5 % or less per year
- Density monitor alarm

A summary of SF$_6$ permit requirements for circuit breakers at similar facilities is presented in Table 9. In addition to the circuit breakers at these facilities, a review of SF6-containing circuit breakers from other dissimilar facilities was conducted using the RBLC Clearinghouse. The complete listing of permit limits obtained from the RBLC Clearinghouse are provided in Attachment 1, Table B.

Based on the information obtained from the RBLC Clearinghouse and review of permits for similar facilities, BACT for circuit breakers is:

- Vendor-guaranteed leak rate of 0.5 % or less per year
- Density monitor alarm
- Written LDAR program for circuit breakers
Table 9
Summary of SF₆ BACT Limits for High Voltage Circuit Breakers

<table>
<thead>
<tr>
<th>Facility</th>
<th>State</th>
<th>Permit Date</th>
<th>SF₆ Operational Limits</th>
<th>Compliance Provisions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red Gate</td>
<td>Texas</td>
<td>Dec. 2013</td>
<td>Leak detection system capable of detecting a leak of at least 1 pound per year. Low pressure alarm, low pressure lockout.</td>
<td>Recordkeeping.</td>
</tr>
<tr>
<td>Port Westward</td>
<td>Oregon</td>
<td>Mar. 2013</td>
<td>Not applicable.</td>
<td>Not applicable.</td>
</tr>
<tr>
<td>Lacey Randall</td>
<td>Kansas</td>
<td>Jan. 2014</td>
<td>Guaranteed loss rate of 0.5% or less per year and density monitor alarm. Written LDAR program for circuit breakers.</td>
<td>Measure SF6 lost and use conversion factor to assess SF6 fugitive emissions in terms of CO₂e. Density monitor alarm system with a threshold of 10%. An alarm event must be investigated and corrected.</td>
</tr>
<tr>
<td>Rubart</td>
<td>Kansas</td>
<td>Mar. 2016</td>
<td>Guaranteed loss rate of 0.5% or less per year and density monitor alarm. Written LDAR program for circuit breakers.</td>
<td>Measure SF6 lost and use conversion factor to assess SF6 fugitive emissions in terms of CO₂e. Density monitor alarm system with a threshold of 10%. An alarm event must be investigated and corrected.</td>
</tr>
<tr>
<td>Schofield</td>
<td>Hawaii</td>
<td>8 September 2016</td>
<td>Not applicable.</td>
<td>Not applicable.</td>
</tr>
</tbody>
</table>
VIII. Summary of BACT Limits

Table 10 includes a summary of BACT limits for the proposed facility.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RICE Units</td>
<td>PM10/PM2.5 (condensable and filterable)</td>
<td>Non-startup: 2.5 pounds/hour</td>
<td>6 hours (average of 3 120-minute test runs)</td>
<td>Minimize engine’s time spent at idle; startup duration limited to 30 minutes; natural gas fuel; operate per manufacturer specifications</td>
<td>Performance tests for condensable and filterable PM10/PM2.5; recordkeeping requirements</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td></td>
<td>Non-startup: 4.43 pounds/hour</td>
<td>1-hour (average of 3 1-hour test runs)</td>
<td>Maintain oxidation catalyst inlet temperature between 450°F and 1350 °F. Minimize time at idle and limit startup duration to 30 minutes.</td>
<td>Performance test, continuously monitor inlet catalyst temperature and pressure drop across catalyst</td>
</tr>
<tr>
<td>VOC</td>
<td></td>
<td>Non-startup: 4.49 pounds/hour</td>
<td>1-hour (average of 3 1-hour test runs)</td>
<td>Same as above</td>
<td>Same as above</td>
</tr>
<tr>
<td>GHG (CO₂)</td>
<td></td>
<td>1,100 lb of CO₂ per MW-hour (gross)</td>
<td>12-month rolling average</td>
<td>Good combustion practices</td>
<td>Performance testing Monitor fuel flow Monitor gross energy output for each engine</td>
</tr>
<tr>
<td>Natural Gas Piping</td>
<td>GHG (CH₄)</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td>AVO LDAR with daily inspections and repair within 15 days</td>
<td>Recordkeeping requirements</td>
</tr>
<tr>
<td>Circuit Breakers</td>
<td>GHG (SF₆)</td>
<td></td>
<td></td>
<td>Vendor-guaranteed leak rate of 0.5 % or less per year; density monitor alarm; written LDAR program for circuit breakers</td>
<td>Recordkeeping requirements</td>
</tr>
</tbody>
</table>
Attachment 1
RBLC Search Data
<table>
<thead>
<tr>
<th>RFLC No.</th>
<th>Facility Name</th>
<th>State</th>
<th>Permit Number</th>
<th>Data Permit Issued</th>
<th>Process</th>
<th>Through-put</th>
<th>Emission Unit #1</th>
<th>Emission Unit #2</th>
<th>Control Method</th>
<th>Emission Limit #1</th>
<th>Emission Limit #2</th>
<th>Percent Removal Efficiency</th>
<th>Emission Unit #1 Averaging Time & Condition</th>
<th>Emission Unit #2 Averaging Time & Condition</th>
<th>Standard Emission Limit</th>
<th>Standard Emission Limit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-0575</td>
<td>SABINE PASS LNG TERMINAL</td>
<td>LA</td>
<td>PSD-IA-030400</td>
<td>7/17/2011</td>
<td>Generator Engines (2)</td>
<td>30,000</td>
<td>Up</td>
<td>1.8</td>
<td>Hydrogen catalytic, good equipment design, and proper combustion techniques</td>
<td>612</td>
<td>43</td>
<td>100</td>
<td>ANNUAL</td>
<td>0.01</td>
<td>WY</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>A-0575</td>
<td>SABINE PASS LNG TERMINAL</td>
<td>LA</td>
<td>PSD-IA-030400</td>
<td>7/17/2011</td>
<td>Generator Engines (2)</td>
<td>30,000</td>
<td>Up</td>
<td>1.8</td>
<td>Catalytic with 93% CO2 Reduction & H.</td>
<td>491</td>
<td>30</td>
<td>100</td>
<td>ANNUAL</td>
<td>0.01</td>
<td>WY</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>A-0575</td>
<td>SABINE PASS LNG TERMINAL</td>
<td>LA</td>
<td>PSD-IA-030400</td>
<td>7/17/2011</td>
<td>Generator Engines (2)</td>
<td>30,000</td>
<td>Up</td>
<td>1.8</td>
<td>Catalytic with 93% CO2 Reduction & H.</td>
<td>491</td>
<td>30</td>
<td>100</td>
<td>ANNUAL</td>
<td>0.01</td>
<td>WY</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>A-036</td>
<td>WIDEBACK & KELLY IMG ENERGY</td>
<td>TX</td>
<td>RPM-74-0512</td>
<td>10/28/2014</td>
<td>Generator Engines (2)</td>
<td>1.72</td>
<td>lb/MMSCF</td>
<td>0.37</td>
<td>0.02</td>
<td>0.25</td>
<td>EXCLUDING STARTUP, SHUTDOWN, MAINTENANCE</td>
<td>1.16</td>
<td>DRAFT</td>
<td>1.16</td>
<td>1.16</td>
<td>DRAFT</td>
<td></td>
</tr>
<tr>
<td>A-0575</td>
<td>SABINE PASS LNG TERMINAL</td>
<td>LA</td>
<td>PSD-IA-030400</td>
<td>7/17/2011</td>
<td>Generator Engines (2)</td>
<td>30,000</td>
<td>Up</td>
<td>1.8</td>
<td>Catalytic with 93% CO2 Reduction & H.</td>
<td>491</td>
<td>30</td>
<td>100</td>
<td>ANNUAL</td>
<td>0.01</td>
<td>WY</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>A-0575</td>
<td>SABINE PASS LNG TERMINAL</td>
<td>LA</td>
<td>PSD-IA-030400</td>
<td>7/17/2011</td>
<td>Generator Engines (2)</td>
<td>30,000</td>
<td>Up</td>
<td>1.8</td>
<td>Catalytic with 93% CO2 Reduction & H.</td>
<td>491</td>
<td>30</td>
<td>100</td>
<td>ANNUAL</td>
<td>0.01</td>
<td>WY</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>RBLC No.</td>
<td>Facility Name</td>
<td>State</td>
<td>Permit Number</td>
<td>Permit Issued</td>
<td>Process</td>
<td>Through-put Units</td>
<td>Pollutant</td>
<td>Control Method</td>
<td>Emission Limit #1</td>
<td>Emission Limit #2</td>
<td>Percent Removal Efficiency</td>
<td>Emission Unit #1 Averaging Time & Condition</td>
<td>Emission Unit #2 Averaging Time & Condition</td>
<td>Standard Emission Limit Units</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>----------------------------</td>
<td>-------</td>
<td>---------------</td>
<td>---------------</td>
<td>--------------------------------------</td>
<td>-------------------</td>
<td>-----------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-----------------</td>
<td>-----------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TX-0680</td>
<td>SONORA GAS PLANT</td>
<td>TX</td>
<td>TX-0680</td>
<td>6/14/2013</td>
<td>Refrigeration compressor engine</td>
<td>1,183</td>
<td>CO</td>
<td>Oxidation catalyst</td>
<td>0.252</td>
<td>0.252</td>
<td>0</td>
<td>1 HOUR</td>
<td>1 HOUR</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TX-0680</td>
<td>SONORA GAS PLANT</td>
<td>TX</td>
<td>TX-0680</td>
<td>6/14/2013</td>
<td>Recompression compressor engine</td>
<td>1,183</td>
<td>CO</td>
<td>Oxidation catalyst</td>
<td>0.252</td>
<td>0.252</td>
<td>0</td>
<td>1 HOUR</td>
<td>1 HOUR</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TX-0680</td>
<td>SONORA GAS PLANT</td>
<td>TX</td>
<td>TX-0680</td>
<td>6/14/2013</td>
<td>Refrigeration compressor engine</td>
<td>1,183</td>
<td>VOC</td>
<td>Oxidation catalyst</td>
<td>0.245</td>
<td>0.245</td>
<td>0</td>
<td>1 HOUR</td>
<td>1 HOUR</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TX-0680</td>
<td>SONORA GAS PLANT</td>
<td>TX</td>
<td>TX-0680</td>
<td>6/14/2013</td>
<td>Recompression compressor engine</td>
<td>1,183</td>
<td>VOC</td>
<td>Oxidation catalyst</td>
<td>0.245</td>
<td>0.245</td>
<td>0</td>
<td>1 HOUR</td>
<td>1 HOUR</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TX-0692</td>
<td>RED GATE POWER PLANT</td>
<td>TX</td>
<td>TX-0692</td>
<td>12/20/2013</td>
<td>(12) Reciprocating internal combustion engines</td>
<td>18 kW</td>
<td>CO</td>
<td>Oxidation catalyst</td>
<td>0.2</td>
<td>0.2</td>
<td>0</td>
<td>1 HOUR</td>
<td>1 HOUR</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TX-0692</td>
<td>RED GATE POWER PLANT</td>
<td>TX</td>
<td>TX-0692</td>
<td>12/20/2013</td>
<td>(12) Reciprocating internal combustion engines</td>
<td>18 kW</td>
<td>PM</td>
<td>Oxidation catalyst</td>
<td>0.2</td>
<td>0.2</td>
<td>0</td>
<td>1 HOUR</td>
<td>1 HOUR</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TX-0692</td>
<td>RED GATE POWER PLANT</td>
<td>TX</td>
<td>TX-0692</td>
<td>12/20/2013</td>
<td>(12) Reciprocating internal combustion engines</td>
<td>18 kW</td>
<td>VOC</td>
<td>Oxidation catalyst</td>
<td>0.2</td>
<td>0.2</td>
<td>0</td>
<td>1 HOUR</td>
<td>1 HOUR</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TX-0746</td>
<td>NUEVO MIDSTREAM, RAMSEY GAS PLANT</td>
<td>TX</td>
<td>TX-0746</td>
<td>11/18/2014</td>
<td>Gas-Fired Internal Combustion Engines</td>
<td>206,149</td>
<td>CO</td>
<td>ULTRA Lean-burn engines, firing residue gas (with low carbon density), equivalent to natural gas, and use of oxidation catalysts</td>
<td>412.3</td>
<td>412.3</td>
<td>0</td>
<td>12-MONTH ROLLING BASIS, INCLUDES MSS</td>
<td>3,840 TYP CODE 12-MONTH ROLLING AVERAGE, INCLUDES MSS</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TX-0755</td>
<td>RAMSEY GAS PLANT</td>
<td>TX</td>
<td>TX-0755</td>
<td>5/21/2015</td>
<td>Internal Combustion-Compression Engines</td>
<td>206,149</td>
<td>CO</td>
<td>ULTRA Lean-burn engines, firing residue gas (with low carbon density) which is equivalent to natural gas, and use of oxidation catalysts</td>
<td>412.3</td>
<td>412.3</td>
<td>0</td>
<td>EACH ENGINE</td>
<td>3,840 TYP CODE EACH ENGINE</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TX-0755</td>
<td>RAMSEY GAS PLANT</td>
<td>TX</td>
<td>TX-0755</td>
<td>5/21/2015</td>
<td>Internal Combustion-Compression Engines</td>
<td>206,149</td>
<td>VOC</td>
<td>ULTRA Lean-burn engines, firing residue gas (with low carbon density) which is equivalent to natural gas, and use of oxidation catalysts</td>
<td>2.84</td>
<td>2.84</td>
<td>0</td>
<td>EACH ENGINE</td>
<td>3,840 TYP CODE EACH ENGINE</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Search results do not include emergency engines.

Abbreviations:
BHP = Brake horsepower
HP = Horsepower
MW = Mega-watts
MP = MPM
CO = Carbon monoxide
CO2 = Carbon dioxide
PM2.5 = PM less than 2.5 microns diameter
PM10 = PM less than 10 microns diameter
VOC = volatile organic compounds
VOC = Volatile Organic Compounds

Table Notes:
1 Throughput estimate in MW is calculated by converting from ekW, HP, or MMBtu/hr.

Table A - RICE Unit Complete RBLC Search Results
<table>
<thead>
<tr>
<th>ID</th>
<th>Facility Name</th>
<th>Company Name</th>
<th>State</th>
<th>Date Issued</th>
<th>Control Method Description</th>
<th>Emission Limit</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>FL-0354</td>
<td>LAUDERDALE PLANT</td>
<td>FLORIDA POWER & LIGHT</td>
<td>FL</td>
<td>8/25/2015</td>
<td>Limitation on leaks</td>
<td>0.5</td>
<td>Percent per year</td>
</tr>
<tr>
<td>FL-0355</td>
<td>FORT MYERS PLANT</td>
<td>FLORIDA POWER & LIGHT (FPL)</td>
<td>FL</td>
<td>9/10/2015</td>
<td>Limitation on leak of SF6 from circuit breakers</td>
<td>0.5</td>
<td>Percent</td>
</tr>
<tr>
<td>FL-0356</td>
<td>OKEECHOBEE CLEAN ENERGY CENTER</td>
<td>FLORIDA POWER & LIGHT</td>
<td>FL</td>
<td>3/9/2016</td>
<td>Leak prevention. Must have manufacturer-guaranteed leak rate no more than 0.5% per year. Must be equipped with leakage detection systems and alarms.</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>IA-0107</td>
<td>MARSHALLTOWN GENERATING STATION</td>
<td>INTERSTATE POWER AND LIGHT</td>
<td>IA</td>
<td>4/14/2014</td>
<td></td>
<td>0.5</td>
<td>Percent</td>
</tr>
<tr>
<td>IA-0108</td>
<td>IOWA STATE UNIVERSITY POWER PLANT</td>
<td>IOWA STATE UNIVERSITY</td>
<td>IA</td>
<td>11/7/2013</td>
<td>Leak detection program</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>IN-0158</td>
<td>ST. JOSEPH ENERGY CENTER, LLC</td>
<td>ST. JOSEPH ENERGY CENTER, LLC</td>
<td>IN</td>
<td>12/3/2012</td>
<td>ALTERNATIVE TECHNOLOGY FULLY ENCLOSED CIRCUIT BREAKERS WITH LEAK DETECTION</td>
<td>0.0009</td>
<td>tons/year</td>
</tr>
<tr>
<td>IN-0166</td>
<td>INDIANA GASIFICATION, LLC</td>
<td>INDIANA GASIFICATION, LLC</td>
<td>IN</td>
<td>6/27/2012</td>
<td>USE OF FULLY ENCLOSED PRESSURIZED SF6 CIRCUIT BREAKERS WITH LEAK DETECTION (LOW PRESSURE ALARM)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>*MD-0042</td>
<td>WILDCAT POINT GENERATION FACILITY</td>
<td>OLD DOMINION ELECTRIC CORPORATION (ODEC)</td>
<td>MD</td>
<td>4/8/2014</td>
<td>INSTALLATION OF STATE-OF-THE-ART CIRCUIT BREAKERS THAT ARE DESIGNED TO MEET ANSI C37.013 OR EQUIVALENT TO DETECT AND MINIMIZE SF6 LEAKS</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>*PA-0309</td>
<td>LACKAWANNA ENERGY CTR/JESSUP</td>
<td>LACKAWANNA ENERGY CENTER, LLC</td>
<td>PA</td>
<td>12/23/2015</td>
<td>low pressure alarms and low pressure lockout system</td>
<td>6</td>
<td>pounds</td>
</tr>
<tr>
<td>ID</td>
<td>Facility Name</td>
<td>Company Name</td>
<td>State</td>
<td>Date Issued</td>
<td>Control Method Description</td>
<td>Emission Limit</td>
<td>Units</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>---</td>
<td>-------</td>
<td>-------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>PA-0310</td>
<td>CPV FAIRVIEW ENERGY CENTER</td>
<td>CPV FAIRVIEW, LLC</td>
<td>PA</td>
<td>9/2/2016</td>
<td>State-of-the-art sealed enclosed-pressure circuit breakers with leak detection</td>
<td>1500</td>
<td>parts per million</td>
</tr>
<tr>
<td>TX-0612</td>
<td>THOMAS C. FERGUSON POWER PLANT</td>
<td>LOWER COLORADO RIVER AUTHORITY</td>
<td>TX</td>
<td>11/10/2011</td>
<td></td>
<td>131</td>
<td>tons/year</td>
</tr>
<tr>
<td>TX-0632</td>
<td>DEER PARK ENERGY CENTER LLC</td>
<td>CALPIINE CO - DEER PARK ENERGY CENTER(DPEC) LLC</td>
<td>TX</td>
<td>11/29/2012</td>
<td></td>
<td>0.0002</td>
<td>tons/year</td>
</tr>
<tr>
<td>TX-0633</td>
<td>CHANNEL ENERGY ENERGY CENTER, LLC</td>
<td>CALPINE CORPORATION-CHANNEL ENERGY CENTER, LLC</td>
<td>TX</td>
<td>11/29/2012</td>
<td></td>
<td>0.0002</td>
<td>tons/year</td>
</tr>
</tbody>
</table>
Attachment 2
Cost Evaluation for Natural Gas Piping
Cost Evaluation for Natural Gas Piping
Leak Detection and Repair (LDAR)

Cost Calculations

<table>
<thead>
<tr>
<th>LDAR Cost Item</th>
<th>1992 Dollars</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annualized Capital Charges - Instrumental LDAR</td>
<td></td>
</tr>
<tr>
<td>Control Equipment</td>
<td></td>
</tr>
<tr>
<td>Monitoring instrument</td>
<td>$1,495</td>
</tr>
<tr>
<td>Compressor seal vent system</td>
<td>$ -</td>
</tr>
<tr>
<td>Rupture disk (i.e., pressure relief device) (Unit A model cost)</td>
<td>$90 for 2 disks</td>
</tr>
<tr>
<td>Rupture disk</td>
<td>$360 for 8 disks</td>
</tr>
<tr>
<td>Rupture disk assembly (Unit A model cost)</td>
<td>$1,256 for 2 disks</td>
</tr>
<tr>
<td>Rupture disk assembly</td>
<td>$5,024 for 8 disks</td>
</tr>
<tr>
<td>Closed-loop sampling (assume none)</td>
<td>$ -</td>
</tr>
<tr>
<td>Subtotal Annualized Capital Charges ($/year)</td>
<td>$6,879</td>
</tr>
<tr>
<td>Annual Maintenance Charges - Instrumental LDAR</td>
<td></td>
</tr>
<tr>
<td>Monitoring instrument</td>
<td>$4,280</td>
</tr>
<tr>
<td>Compressor seal vent system</td>
<td>$ -</td>
</tr>
<tr>
<td>Rupture disk (Unit A model cost)</td>
<td>$8 for 2 disks</td>
</tr>
<tr>
<td>Rupture disk</td>
<td>$32 for 8 disks</td>
</tr>
<tr>
<td>Rupture disk assembly (Unit A model cost)</td>
<td>$385 for 2 disks</td>
</tr>
<tr>
<td>Rupture disk assembly</td>
<td>$1,540 for 8 disks</td>
</tr>
<tr>
<td>Caps for open-ended lines (assume none)</td>
<td>$ -</td>
</tr>
<tr>
<td>Closed loop sampling (assume none)</td>
<td>$ -</td>
</tr>
<tr>
<td>Replacement pump seals (assume none)</td>
<td>$ -</td>
</tr>
<tr>
<td>Subtotal Annual Maintenance Charges ($/year)</td>
<td>$5,852</td>
</tr>
<tr>
<td>Annual Miscellaneous Charges (taxes, insurance, administration) - Instrumental LDAR</td>
<td></td>
</tr>
<tr>
<td>Monitoring instrument</td>
<td>$260</td>
</tr>
<tr>
<td>Compressor seal vent system</td>
<td>$ -</td>
</tr>
<tr>
<td>Rupture disk (Unit A model cost)</td>
<td>$314 for 2 disks</td>
</tr>
<tr>
<td>Rupture disks</td>
<td>$1,256 for 8 disks</td>
</tr>
<tr>
<td>Caps for open-ended lines (assume none)</td>
<td>$ -</td>
</tr>
<tr>
<td>Closed loop sampling (assume none)</td>
<td>$ -</td>
</tr>
<tr>
<td>Replacement pump seals (assume none)</td>
<td>$ -</td>
</tr>
<tr>
<td>Subtotal Annual Misc. Charges ($/year)</td>
<td>$1,516</td>
</tr>
<tr>
<td>Labor Charges - Instrumental and AVO LDAR</td>
<td></td>
</tr>
<tr>
<td>LDAR monitoring</td>
<td>$12,940</td>
</tr>
<tr>
<td>Subsequent repair</td>
<td>$7,369</td>
</tr>
<tr>
<td>Administrative and support</td>
<td>$8,124</td>
</tr>
<tr>
<td>Subtotal Labor Charges ($/year)</td>
<td>$28,433</td>
</tr>
<tr>
<td>Grand Total ($/year) - Jan. 1992 dollars - Instrumental LDAR</td>
<td>$42,680</td>
</tr>
<tr>
<td>Grand Total ($/year) - Jan. 1992 dollars - AVO LDAR*</td>
<td>$20,309</td>
</tr>
</tbody>
</table>

Total Annual Cost

<table>
<thead>
<tr>
<th>Total Annual Cost</th>
<th>2017 Dollars</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grand Total Cost of Instrumental LDAR ($/year)</td>
<td>$75,049</td>
</tr>
<tr>
<td>Grand Total Cost of AVO LDAR ($/year)</td>
<td>$35,712</td>
</tr>
</tbody>
</table>

Cost Effectiveness Calculations

<table>
<thead>
<tr>
<th>Calculation</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uncontrolled emission rate, mass greenhouse gas (GHG) (ton/year)</td>
<td>31.30</td>
</tr>
<tr>
<td>Control efficiency of instrumental LDAR</td>
<td>48%</td>
</tr>
<tr>
<td>Mass GHG emission reduction from instrumental LDAR (ton/year)</td>
<td>15.02</td>
</tr>
<tr>
<td>Control efficiency of auditory, visual, olfactory (AVO) LDAR</td>
<td>30%</td>
</tr>
<tr>
<td>Mass GHG emission reduction from AVO LDAR (ton/year)</td>
<td>9.39</td>
</tr>
<tr>
<td>Density of natural gas (pounds/cubic foot)</td>
<td>0.04</td>
</tr>
<tr>
<td>Volume GHG emission reduction from instrumental LDAR (cubic feet/year)</td>
<td>715,142</td>
</tr>
<tr>
<td>Volume GHG emission reduction from AVO LDAR (cubic feet/year)</td>
<td>446,964</td>
</tr>
<tr>
<td>Value of natural gas ($/1000 cubic feet - 2016)</td>
<td>$2.99</td>
</tr>
<tr>
<td>Instrumental LDAR Cost Effectiveness</td>
<td></td>
</tr>
<tr>
<td>Natural gas recovery savings from instrumental LDAR ($/year)</td>
<td>$2,138</td>
</tr>
<tr>
<td>Net annual cost of instrumental LDAR (grand total cost - savings) ($/year)</td>
<td>$72,911</td>
</tr>
<tr>
<td>Cost effectiveness of instrumental LDAR, mass basis ($/ton GHG)</td>
<td>$4,853</td>
</tr>
<tr>
<td>Cost effectiveness of instrumental LDAR, carbon dioxide equivalent (CO₂e) basis ($/ton CO₂e)</td>
<td>$194</td>
</tr>
<tr>
<td>AVO LDAR Cost Effectiveness</td>
<td></td>
</tr>
<tr>
<td>Natural gas recovery savings from AVO LDAR ($/year)</td>
<td>$1,336</td>
</tr>
<tr>
<td>Net annual cost of AVO LDAR ($/year)</td>
<td>$34,376</td>
</tr>
<tr>
<td>Cost effectiveness of AVO LDAR, mass basis ($/ton GHG)</td>
<td>$3,661</td>
</tr>
<tr>
<td>Cost effectiveness of AVO LDAR, carbon dioxide equivalent (CO₂e) basis ($/ton CO₂e)</td>
<td>$146</td>
</tr>
</tbody>
</table>

1 Pipeline natural gas is 95-98% methane. For cost effectiveness calculations, GHG emissions are assumed to be equal to methane emissions. (see: https://www.epa.gov/natural-gas-star-program/overview-oil-and-natural-gas-industry)