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ABSTRACT 
 
The Pima Pineapple Cactus is a federally-listed endangered species in southern Arizona that is 
often surveyed for compliance with federal law. The recommended survey protocol for this 
species (Roller method) attempts a complete census of all individuals, which is time intensive 
and assumes all individuals are detected during surveys. We tested a new survey method based 
on distance sampling (DS), which involves measuring distances to cacti observed from transect 
lines, and compared abundance estimates from DS with values recently obtained with the Roller 
method. Because DS is based on sampling theory, it requires only a subset of the overall 
population to be observed to obtain precise estimates of abundance. We observed 105 live Pima 
Pineapple Cacti while DS along 36.9 km of line transects at 11 study sites in southern Arizona. 
Density within those study plots averaged 1.47 individuals/ha with an estimated total of 294 
individuals overall based on DS, and precision of estimates was high (CV = 0.139). Based on 
what we presumed to be known values of abundance from the Roller method, both density and 
abundance were well estimated by DS, which underestimated abundance by just 11.4% overall. 
Abundance estimates from DS were also highly correlated with values from the Roller method 
on both the untransformed (r = 0.82, p = 0.002), and especially logarithmic scales (r = 0.92, p < 
0.001). Estimates of detection probability from DS indicate that between 4-8% of cacti are likely 
to be undetected by observers during surveys with the Roller method, especially in areas 
dominated by larger rocky substrates (versus sand or silt). Combined with recommendations we 
present to improve accuracy, DS is an effective method for surveying this species for various 
research and monitoring applications. 
 
 
INTRODUCTION  
 
The Pima Pineapple Cactus (Coryphantha scheeri var. robustispina; hereafter “PPC”) has a 
relatively narrow distribution near the ecotone between desert-scrub and semi-desert grasslands 
in south-central Arizona and adjacent Sonora, Mexico. In response to various threats such as 
urban development, invasion of non-native grasses, overgrazing, and climate change, the PPC 
was listed as endangered in 1993 and a draft recovery plan was recently issued by the U.S. Fish 
and Wildlife Service (USFWS 2007, 2017). Although a number of studies provide information 
on the ecology and distribution of the PPC (e.g., Roller 1996a; McDonald 2005; Kidder 2015), 
major gaps of knowledge remain. Among these information gaps, is the need for an efficient 
survey method that can provide inferences on the distribution and abundance of this endangered 
species across both space and time, and information on environmental factors that influence 
these parameters.   
 
With regard to survey methods, the current recommended survey protocol for the PPC (Roller 
1996b) attempts a complete census of populations and thus complete enumeration of population 
size in a given focal area. Such an approach is appropriate where ground disturbance is proposed 
or in other situations where complete population enumeration and mapping are required for 
compliance with the Endangered Species Act. Nonetheless, efforts to census populations are 
often too time intensive to be efficient for research and monitoring applications, and are often 
based on unrealistic assumptions of perfect detection probability. For PPC, these issues are 
especially relevant because individual cacti are often small, may occur in areas of dense grass 
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and shrubs, and are widely spaced over large areas, increasing the probability some individuals 
will be present but undetected during censuses. Where researchers endeavor to assess patterns of 
distribution and abundance across space and time, and habitat relationships, robust field methods 
based on sound sampling theory (e.g., observing a random sample and extrapolating to a larger 
population) should be capable of providing accurate inferences on populations with much greater 
efficiency. 

Distance sampling (DS) is an effective method for estimating the distribution, abundance, and 
habitat relationships of both terrestrial and aquatic wildlife populations, and is applicable over 
broad geographic areas and for rare species given sufficient sampling effort (Thomas et al. 2002, 
2010).  Although DS has mainly been applied to vertebrate populations (e.g., Rosenstock et al. 
2002, Flesch et al. 2016), it can be useful for plants despite few examples of its application 
(Buckland et al. 2007, Kissa and Sheil 2012, Schorr 2013). Distance sampling involves 
measuring the distances to focal objects from lines or points, and modeling a detection function 
that adjusts estimates of abundance for variation in detection probability. A recent pilot effort 
focused on applying DS to measuring abundance of the PPC produced encouraging results 
(Powell 2015). Before DS can be adopted to address research and monitoring questions for the 
PPC, however, more information and testing are needed. Although DS is highly efficient for 
estimating and monitoring spatiotemporal variation in abundance, it is largely untested in arid 
environments and for plants (but see Anderson et al. 2001). 
 
Here, we test a novel field-based approach for surveying the PPC based on DS. To do so, we 
compare estimates of population size and densities obtained during DS procedures with 
estimated known values of these parameters based on censuses that were often coupled with 
intensive repeated monitoring and thus involved additional effort. This work was conducted at 11 
sites in southern Arizona, which we selected non-randomly based on criteria discussed below. 
Thus, inferences reported here pertain only to the study sites themselves, not the entire 
population of cacti across the range of the taxon. Additionally, we discuss issues related to the 
design and implementation of DS for the PPC based on our findings, and assess factors that 
influence detection probability during line-transect sampling. Finally, we assess associations 
between local estimates of density of PPC (e.g., within-site estimates) and environmental factors 
such as vegetation cover and soil substrate size to provide an example of how DS can be applied 
to understand habitat relationships.  
 

OBJECTIVES 
 
Our project focused on the following three objectives:  

1. A statistical comparison of estimates of PPC density and abundance based on DS and the 
Roller (1996b) or other similar census methods in the same areas. 

2. Estimates of the influence of environmental variables on abundance and detection 
probability of PPC. 

3. Guidance on the application of DS for PPC monitoring and research programs. 
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METHODS 
  
Study Area and Design: We surveyed the PPC at sites in the Brawley (Altar Valley) and Santa 
Cruz watersheds in eastern Pima County located south of Tucson, Arizona (Fig. 1). We focused 
in areas known to support PPC and selected study sites based largely on two criteria: 1) areas 
with long histories of intensive PPC monitoring such that abundances and densities of PCC were 
largely known and had been documented within approximately 4 years of our efforts, and 2) 
lands owned or managed by Pima County where the presence of PPC was known but where 
densities were unknown and thus needed to be documented to support our efforts. Because this 
design did not involve random selection of study plots, inferences provided here pertain only to 
the sampled plots rather than to the broader population of potential plots or the entire range of 
the taxon. In addition to these criteria, we stratified effort between the two dominant vegetation 
communities (Sonoran desert-scrub and semi-desert grassland) in which PPC occur, sampled 
across gradients in elevation, and considered as broad a range of natural variation in PPC 
densities found in Arizona as possible.  
 
With regard to the first criteria, we selected 5 of 6 sites (Anvil, Guy Street, Mendoza, Palo Alto, 
Stagecoach) in the Brawley watershed where long-term PPC monitoring efforts were established 
in 1997 by B. Schmalzel (2000) and 2002 by R. Routson (2003) and continued by M. Baker 
through September 2012 (Baker 2013). We also considered 2 sites on Sycamore Canyon 
Properties east of Sahuarita where PPC monitoring began in 2004 and continued until just before 
our surveys (Westland Resources 2004, 2017, S. Hart, pers. comm.). At each of these 7 sites, the 
distribution and abundance of PPC were initially documented using the Roller (1996b) method. 
The Roller method involves multiple observers spaced 4-6 m apart walking parallel transects and 
exhaustively searching for cacti until a focal area is completely covered, with additional effort 
recommended in some situations. Thus, under the Roller method each observer is responsible for 
covering a distance 2-3 m away during surveys. After initial site surveys, PPC that were found 
were monitored across time, which involved observers searching for previously unknown cacti 
while walking new routes to known plants so as to maximize coverage, and adding new 
individuals to the sample. Thus, data we considered are the best enumeration of population sizes 
available for these areas but may not provide a full enumeration of all individuals. This is 
because of the time since plots were last surveyed and plant mortality, and because an untested 
assumption of the Roller method is that it allows for complete enumeration of population sizes 
by assuming detection probability is perfect within 2-3 m of observers. Access to all sites was 
provided by landowners and land management agencies. 
 
With regard to the second criteria, we selected 4 additional study sites, including one on Canoa 
Ranch and 3 on Sopori Ranch (Fig. 1). These sites were selected to augment sample sizes for 
comparing known and distance-based estimates of densities, to help ensure effort spanned as 
close to the natural known range of variation of PPC densities in the wild as possible, and to 
bolster inferences on associations between densities and environmental factors. At these sites, 2 
observers (different from those that completed DS) employed the Roller method in an attempt to 
completely enumerate population size. Additionally, any new individuals discovered incidentally 
after surveys during DS were incorporated into estimates of population size at sites. Thus, 
assuming the accuracy of past surveys and population stability, PPC populations at sites we 
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sampled were completely enumerated during that last 0-4 years so that estimates from DS could 
be compared to estimated known values.   
 
Before DS, we uploaded plot boundaries into handheld global positioning systems (GPS) to 
ensure surveys overlapped past coverage. Because >80% of individuals occupied only a portion 
of the Anvil and Mendoza plots (4 of 5 for Anvil; 69 of 71 for Mendoza), we implemented DS 
on portions of these plots and adjusted Baker’s estimates (2013) to improve efficiency. We used 
recent pilot data from DS the PPC along line transects (Powell 2015) to guide survey design. 
That effort found an effective strip width of transects between 8 and 13 m, and that the furthest 
PPC detected from lines was at ≈25 m. Thus, we placed sets of parallel line transects 50-m apart 
across plot boundaries in a direction approximately equaled to the longest dimension of each plot 
(except at Sycamore Canyon A where transects were parallel to shortest plot dimension), and 
began surveys from a random point on plot boundaries approximately 25 m from the edge of the  
boundary. We then sampled environmental conditions (see below) at 100-m intervals along each 
line, beginning approximately 100 m from plot boundaries (Fig. 1). 
 
Distance-sampling surveys: Distance sampling stationary objects such as plants involves two 
main assumptions to ensure accurate estimation: 1) perfect detection of focal objects on the 
transect line, and 2) accurate measurement of distances between lines and focal objects. 
Additionally, a key design consideration when implementing DS is to place lines according to a 
randomized design. This ensures lines are positioned independently of focal objects and that 
objects are not uniformly distributed with respect to their distances from lines, which can bias 
estimates (Buckland et al. 2015). Bias is defined as differences between estimates obtained 
during sampling and the known or parametric value for the population. 
 
To implement DS, two surveyors slowly walked each line with one surveyor focused on and 
immediately around lines, while the other surveyor walked short serpentine paths around lines 
but remained within approximately 0-6 m of lines and scanned the line and the surrounding area 
for cacti (see Fig. 3 in Anderson et al. 2001). This arrangement ensured focused effort on and 
around the center line as well as effort along both sides of lines. Surveyors carefully scanned 
clumps of vegetation focusing near center lines to help ensure all PPC on or immediately around 
lines were detected. Observers also frequently scanned behind them to ensure cacti that may 
have been obstructed in one direction were detected from the opposite direction. Because PPC 
sometimes occurred in small clusters of several individuals spaced ≈10-20 m apart, after 
detecting a PPC observers scanned the surrounding area from lines, and noted individuals 
detected only while measuring cacti away from lines as incidentals that were not included in 
analyses. All surveys were conducted during low winds (<10 km/hr), during daylight hours when 
the sun was well above the horizon, and in winter or spring when cover of green grasses and 
forbs was minimal. All observers were trained in the identification of PPC and practiced DS and 
line placement at 2 non-focal sites to perfect techniques before implementation.      
 
For each PPC detected, we gathered the following information: 1) perpendicular distance from 
the transect line to the center of the PPC to the nearest dm for cacti within 0-8 m of lines and 
typically to the nearest m otherwise (measured with a tape and rangefinder, respectively), 2) 
height of PPC in cm from the ground to top of the tallest spine (measured with a ruler), 3) width 
in cm of the PPC or clump (measured with a ruler), 4) the number of pups or small heads, 5) 
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status of plant (e.g., live or dead), 6) whether plants were marked and if so the code, and 7) used 
a GPS to record UTMs of all individuals. 
 
To assess the influence of various potential covariates of detection probability and quantify 
environmental conditions along lines, we established points every 100 m along lines. Around 
each point we placed a 10-m radius plot centered on point. Within each 10-m radius plot, we 
gathered the following information: 1) volume of vegetation between 0-1 m above ground 
(measured to nearest 10% between 20-80% and 5% otherwise), 2) grass cover (nearest 10% 
between 20-80% and 5% otherwise), 3) mean understory height of rooted vegetation (e.g., 
grasses, forbs, sub-shrubs; nearest dm), and 4) size class of dominant soil substrate (1-fine sand 
with few larger particles, 2-coarser gravel with particles up to about 1 cm diameter, 3–rocky 
substrate with particles >2 cm diameter). For vegetation volume, we considered vegetation 
rooted within plots and visually estimated volume assuming 100% volume around plant 
canopies. For understory height, we visually estimated the mean height of all understory plants 
excluding cacti and yucca (e.g., those in the lowest vegetation layer) rooted within plots 
weighted by cover (e.g., larger plants had higher influence than small ones). For grass cover, we 
considered annual (excluding small basal species such as Schismus sp.) and perennial grasses 
rooted within plots and focused on basal cover. Additionally, for each plot we noted the 
dominant vegetation community (desert-scrub and semi-desert grassland) and recorded UTM 
coordinates of all survey points with a GPS. Subsequently, we used the slope and interpolate 
shape tools in ArcGIS 10.3.1 to estimate the elevation (m) and slope (%) at each point using a 
10-m resolution digital elevation model (DEM) from the National Elevation Dataset available 
from the U.S. Geological Survey. We used a DEM to estimate elevation because GPS error was 
sometimes high. 

Analyses: To estimate transect effort, we computed the length of transect lines by summing 
distances between successive points and adding the length of any remainders <100 m in length 
that were required to completely survey plots. To calculate distances between successive points, 
we used UTM coordinates that we recorded with a GPS and used Pythagorean Theorem. To 
estimate the abundance and density of PPC, we treated each transect line as a replicate and 
stratified by site so that estimates were computed for each site, but could also be post-stratified to 
estimates densities for each transect line within a site. To compute the density of PPC across the 
entire population of sites, we weighted estimates at each site by the total area of each site. Before 
analyses, we inspected histograms of raw distance data and established bin sizes (e.g., cut-points) 
of 2.5 m to smooth data, and right truncated 5% of detections (Fig. 2). Both of these techniques 
improve model fit by addressing issues such as “heaping” and because there is little information 
in the “tails” of distance data, which may require complex adjustments when fitting models, 
which are often not biologically justified (see details in Buckland et al. 2001, Thomas et al. 
2010).  

We used two strategies to estimate density, abundance, detection probability, and other 
parameters, and used the Microsoft Windows-based program Distance version 6.2 for all 
calculations (Thomas et al. 2010). First, we fit a simple detection function to data with use of 
conventional distance sampling procedures. Second, we fit detection functions with covariates 
with use of multiple-covariates distance sampling to assess the influence of various factors (other 
than distance) on the scale of detection functions. In both cases, we fit a single detection function 
to data for all sites combined because sample sizes were insufficient to fit separate functions for 
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each site. As covariates, we considered estimates of vegetation volume, grass cover, understory 
height, soil substrate size, and slope, which we averaged among points along each line. Estimates 
of slope were log transformed to minimize the influence of extreme values. To fit detection 
functions, we first considered each covariate individually, assessed parameter estimates and their 
standard errors (SE) to identify influential covariates, and then fit additive combinations of some 
covariates. To select the best approximating model, we ranked models based on Akaike 
information criterion adjusted for small sample sizes (AICc), evaluated the shapes of detection 
functions, precision of estimates, and goodness-of-fit for highly ranked models, and selected the 
best overall model from which we made inferences (Thomas et al. 2010). We considered 
uniform, half-normal (HN), and hazard-rate (HR) detection functions for models without 
covariates, and HN and HR functions for models with covariates. When fitting HN and HR 
functions, we considered models with 0-2 cosine, simple polynomial, and hermite adjustment 
terms. We excluded dead PPC from estimates. 

To further understand factors that influenced the observation process during DS, we used 
multiple linear regression to assess factors that explained variation in detection distances to PPC. 
Thus, we fit detection distance as a response variable and considered the following potential 
covariates: mean vegetation volume, grass cover, understory height, soil substrate size, and slope 
along lines where each PPC was detected, and the height of each PPC.  We log transformed 
some factors including the detection distance to better meet model assumptions.  

To quantify the efficacy of DS, we computed percent differences between values from past 
censuses and estimates of density and abundance from DS (e.g., bias) at the scale of each site and 
for the overall population. Additionally, we computed Pearson correlation coefficients to 
quantify the strength of linear relationships between both raw and log-transformed estimates of 
density from censuses and those from DS. To assess factors that explained bias at the scale of 
sites, we used linear regression with bias as the response variable, and the following factors as 
potential explanatory factors: mean vegetation volume, grass cover, understory height, soil 
substrate size, log slope, elevation, PPC height, and plot area. For the categorical factor census 
method (e.g., Roller only vs. Roller and repeated monitoring), we used a t-test. 

To assess environmental factors that explained variation in PPC densities across space, we used 
our best overall detection function model and post-stratified estimates by transect line so as to 
compute densities at the scale of each line. We censored data from short lines <200-m in length, 
some of which were required to fully cover sites, because they contained little information that 
could influence inferences. This procedure resulted in a sample of 76 lines that averaged 476 m 
(SE = 16) in length along which densities ranged from 0 to 10.5 plants/ha (mean ± SE = 1.5 ± 
0.2). We then developed a linear-mixed effect model to assess the influence of various 
environmental factors on variation in local densities. To develop models, we fit log density as the 
response variable and considered the following potential explanatory factors, which we 
generated after eliminating one factor for each correlated (r ≥ 0.66) pair of factors that we 
assumed was less descriptive (e.g., understory height because it was correlated with vegetation 
volume, and elevation which was correlated with substrate size): mean vegetation volume, grass 
cover (log transformed), soil substrate size, slope (log transformed), and vegetation community. 
We also considered quadratic terms for all continuous variables. Because the number of potential 
explanatory factors was high and data to develop candidate models a priori was limited, we used 
stepwise procedures with mixed variable selection and the stepAIC function in the MASS library 
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in R (Venables and Ripley 2002, R Development Core Team 2016) to select explanatory factors. 
We used Bayesian information criterion (BIC) to guide variable selection because it penalizes 
model complexity more than AICc and reduces chances of overfitting. To adjust for correlations 
among observations from lines within the same sites, we fit a random intercept for site. All 
models were fit with the nlme library in R (Pinheiro et al. 2012, R Development Core Team 
2016). 

 
RESULTS 
 
Effort and Detections: We recorded 105 live and 15 dead PPC during DS along 36.9 km of line 
transects across the 11 sites. Linear effort ranged from as low as 866 m at the smallest site 
(Sopori 3; 4 ha) to 5,745 m at a larger site (Guy Street; 23.8 ha). Across all sites, we measured 
environmental covariates within 10-m radius plots at 476 points, which ranged from as few as 14 
points at the smallest site to 70 at a larger site. Effort was similar in the Santa Cruz (n = 6 sites) 
and Brawley (5) watersheds. Although there were more sites in desert-scrub (7) than semi-desert 
grassland (4), on average sites in grassland were larger than those in desert-scrub. Elevation 
ranged from as low as 799 m at Guy Street in the Brawley watershed to 1,092 m at Sycamore 
Canyon Properties in the Santa Cruz watershed. We completed DS in February, March, 
November, and December of 2016, and in February 2017. 
 
Model Selection and Detection Probability: We fit 14 candidate models of detection functions 
that included between 1 and 4 parameters (Table 1). There was strong evidence factors other than 
distance influenced detection probability (P; ranges from 0-1), with little support for a model that 
included no covariates (ΔAICc = 4.55). The top-ranked model included the covariate substrate 
size, with P declining as soils became increasing dominated by large particles (β ± SE = -0.44 ± 
0.19). At 10 m from lines, for example, P declined from 0.58 in areas with small- to moderate-
sized substrates (e.g., 1.6) to 0.35 in areas with moderate- to large-sized substrates (e.g., 2.3; Fig. 
3). Although understory vegetation volume (-0.012 ± 0.0066), grass cover (-0.008 ± 0.004), and 
cactus height (0.045 ± 0.026) influenced P in the expected directions when fit independently 
(Fig. 3), once the effect of substrate size was considered there was little evidence these 
covariates improved model fit given associated increases in model complexity (Table 1). In 
contrast, understory vegetation height (-0.0056 ± 0.0071) and slope (-0.091 ± 0.19) had no 
influence on P (Table 1). Regardless of which covariates were included, estimates of density, 
average P, and other parameters were similar at the scale of the overall population (Table 1). In 
all cases, half-normal key functions with cosine adjustment terms provided the best fit. 
 
Estimates of P from the top-ranked model averaged 0.49 (95% CI = 0.42-0.56), with an effective 
strip width of line transects (e.g., the distance at which P = 0.5) of 9.71 m (95% CI = 8.35-11.28; 
CV = 0.076). At 2 m from lines, P averaged 0.96 and declined to 0.92, 0.80, 0.43, and 0.06 at 3, 
5, 10, and 20 m from lines, respectively (Fig. 4). 
 
Raw detection distances to PPC we observed from transect lines (e.g., actual distances between 
lines and cacti) was explained by the height of plants and by mean grass cover (R2 = 0.103), but 
other factors had little (p ≤ 0.15 for log slope) or no (p ≥ 0.41) association with distances after 
controlling for these factors. On average, detection distances increased by 5.3 ± 1.8% with each 
1-cm increase in the height of plants (p = 0.005), but decreased 0.82 ± 0.37% (p = 0.031) with 



 

9 
 

each 1% increase in mean grass cover. Mean height of PPC detected along lines was 12.2 cm 
(SE = 0.40) with only 2.5% of individuals ≤2.8 cm and only 10% ≤6.6 cm, indicating few cacti 
were small.  
 
Density and Abundance: Across the entire population of sites, we estimated a density of 1.465 
live individuals/ha, and an abundance of 294 individuals overall. Importantly, precision of 
estimates was relatively high (CV= 0.139; 95% CI in Table 1). These estimates were based on a 
total sample of 100 individuals after truncating 5% of observations (e.g., those at distances >20 
m from transect lines), indicating that we detected approximately one third of all individuals 
estimated to occur within the boundaries of focal sites. At the scale of individual sites, density 
estimates ranged from 0.146 to 5.95 individuals/ha and abundance from 3 to 125 individuals, 
with much lower precision (Table 2). 
 
Efficacy of Distance Sampling: Across the entire population of sites, both density and abundance 
were fairly well estimated by DS with an overall bias across the population of -11.4% (e.g., DS 
underestimated densities). At the scale of individual sites, however, bias in density estimates 
ranged from as low as 59.6% underestimation to as high as 64.1% overestimation, with the 
absolute value of bias as low as 7.3% (Table 2). Density estimates from DS were also highly 
correlated with estimates based on census efforts on both the untransformed (r = 0.82, p = 
0.002), and especially, logarithmic scales (r = 0.92, p < 0.001; Fig. 5). Based on an estimated 
known population size of 332 PPC across all sites, we detected approximately 30% of 
individuals during DS. With regard to factors that explained bias, there was some evidence bias 
increased (β ± SE = -1.03 ± 0.65, p = 0.14) as mean grass cover increased. Although there was 
no evidence means differed due to high variability and small sample size (p = 0.41), mean bias 
averaged 14.9 ± 28.5% higher at sites where densities were documented with the Roller method 
(mean = 18.0% underestimation) than those where the Roller method followed by intensive 
repeated monitoring was used (mean = 3.0% underestimation).       
  
Factors that Explained Densities: Local densities at the scale of individual transect lines within 
sites (see Table 2 for sample sizes and effort) increased with increasing slope and soil substrate 
size, and decreased with increasing understory vegetation volume (p ≤ 0.022) after adjusting for 
repeated measurements of the same sites (Table 4). Densities decreased by 1.5 ± 0.6% with each 
1% increase in grass cover. After accounting for the effects of all three factors, there was no 
evidence variation in local densities was associated with grass cover (p = 0.59) or vegetation 
communities (p = 0.21). Based on the top-ranked model (Table 1), density averaged 1.00 
individuals/ha in desert-scrub (CV = 0.224, 95% CI = 0.64-1.56) and 1.84 in semi-desert 
grassland (CV = 0.235, 95% CI = 1.15-2.93); because confidence intervals overlapped these 
estimates suggest similar densities in both communities at least based on the sample sizes 
obtained here. 
 
 
DISCUSSION 
 
We tested a new method for estimating abundance of the endangered Pima Pineapple Cactus 
(PPC) in southern Arizona based on distance-sampling procedures (Buckland et al. 2001). 
Although distance sampling (DS) is a proven and efficient method for estimating abundance and 
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detection probability in a broad range of terrestrial and aquatic animal systems (Thomas et al. 
2002, 2010), to our knowledge, our efforts represent just its fifth application in a plant system 
(Buckland et al. 2007, Jensen and Meilby 2012, Kissa and Sheil 2012, Schorr 2013). Overall, 
results of our efforts were auspicious and suggest DS can provide precise and fairly unbiased 
estimates of density and other parameters for research and monitoring applications in this and 
likely other similar systems in the Sonoran Desert. Additionally, we also provided insights into 
environmental factors that influence detection probability and abundance, which will be useful to 
managers, policy makers, and researchers in understanding PPC ecology and guiding surveys. 
Application of DS, however, was far from perfect and thus we suggest some modifications to the 
procedures used here to improve inferences. 
 
Estimates of bias based on what we presumed to be parametric values of densities from census 
efforts and estimates from DS was fairly low across the entire population of sites we sampled, 
equaling just 11.4% underestimation overall. At the scale of individual sites, however, bias at 
some localities was much higher and included both underestimation and overestimation. 
Importantly, the magnitude of bias seemed relatively consistent across the entire range of 
densities we considered as indicated by a fairly tight linear relationships and high correlation 
between values from DS and census procedures. Additionally, the precision of estimates from 
DS was also relatively high (CV =0.139), with 95% confidence intervals that were narrow even 
despite relatively small sample sizes of 100 individuals. For DS along line transects, a 
recommended minimum sample size of between 60 and 80 focal objects is recommended to 
obtain unbiased estimates (Buckland et al. 2001). These results suggest DS can provide relatively 
accurate estimates of density across a wide range of natural variation in densities we considered 
(e.g., 0.1-5.5 individuals/ha), and likely, across the full natural range of densities that occur in the 
wild. On average, PPC densities are estimated to be approximately 1 individual/ha across the 
range of the species (Baker 2013, McDonald 2005). 
  
Two additional factors also provide support for the applicability of DS for PPC population 
estimation. Important assumptions of DS include perfect detection of focal objects on the 
transect line and use of a randomized design to ensure lines are positioned independently of focal 
objects, so that objects are not uniformly distributed with respect to their distances from lines. In 
cases where individual plants are closely clustered, focal objects may not be distributed 
uniformly with respect to lines, especially when plots are small (Buckland et al 2007). Frequency 
histograms of detection distances of PPC had an obvious “shoulder” and declined relatively 
monotonically with distance from lines, especially when data were appropriately binned and thus 
smoothed. Such results suggest PPC distribution was sufficiently uniform to eliminate issues 
imposed by clustering (see Buckland et al. 2015 for details). Although PPC were sometimes 
founds in small groups of several nearby plants, clustering did not seem to impose significant 
bias, eliminating the need for crossed designs and other approaches for addressing these issues 
(see Buckland et al. 2007 for details on these designs). With regard to perfect detection of focal 
objects on the transect line, there was some evidence negative bias of estimates was due to 
plants, especially small ones, being hidden by vegetation along lines (see below). Nonetheless, 
the relative openness of arid environments that provide habitat for this species, the unique 
silhouette of PPC, and recommendations we summarize below, should adequately mitigate this 
issue. In general, DS is a suitable and efficient method for estimating PPC abundance, and 
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should also be useful for monitoring spatiotemporal changes in distribution and abundance such 
as has been included in Pima County’s Multi-species Conservation Plan (Pima County 2016).   
 
Several factors likely influenced observed bias of estimates, and knowledge of these factors has 
important implications for understanding our results and guiding future efforts. First, while we 
assumed values from past censuses represented parametric values, actual population sizes and 
thus densities were not known exactly. This is because surveys of the five plots we considered in 
the Brawley watershed were last conducted ≈4 years ago, because new individuals were 
continuously documented during repeated monitoring, and because PPC populations at these 
sites declined at an average rate of ≈4.9%/year over 9 years (2003-2012) based on data provided 
by Baker (2013). Similarly, estimates at sites censused with the Roller method followed by 
repeated monitoring across time were likely more accurate than those at the four sites where we 
conducted Roller surveys ourselves given greater search effort even despite the temporal issues 
noted above. Moreover, even by spacing observers at 4-6 m intervals as dictated by the Roller 
(1996b) method, estimates of detection probability we report here suggest between 4-8% of 
individuals are likely to be undetected during Roller-type surveys. Such factors likely 
contributed to bias we observed here and suggests the Roller method does not ensure perfect 
detection probability unless sites are surveyed multiple times perhaps. Second, while we 
attempted to search clumps of dense vegetation near lines for PPC during surveys, there was 
some evidence bias increased with increasing grass cover. While such patterns are based on 
small sample sizes, they suggest we failed to detect some PPC on or close to lines, especially 
when grass cover was high. Finally, distances to observed PPC varied markedly with the height 
of PPC plants and with grass cover, suggesting we likely missed more small individuals than 
larger ones, especially in areas with moderate to high grass cover. Together, these factors suggest 
high likelihoods of negative bias during DS, such as we observed here, and the need for 
designing surveys to minimize bias associated with these factors.      
 
Some inferences we summarized on habitat relationships are consistent with the known biology 
of PPC, whereas others varied somewhat. Similar to our results for densities, McPherson (2002) 
found that occurrence of PPC plants was positively associated with larger-sized soil substrates 
(e.g., gravel vs. sand). However, Kidder (2015) suggested that at one site higher sand content 
was associated with larger PPC and more pups. Although McPherson (2002) found the 
occurrence of PPC plants was associated with moderate levels of herb and woody plant cover, 
we found that densities declined with increasing grass cover, although few sites had cover that 
exceeded 15%. Similarly, Kidder (2015) noted that PPC grew in sites that had uniformly high 
incoming solar radiation (i.e., growing in the open) and equated the open areas where PPC 
occurred to low levels of competition for soil moisture with other plants. Although McPherson 
(2002) found occurrence of PPC plants was not associated with any specific landform or slope 
position, we found local densities within sites increased in areas with high slopes, potentially due 
to the relationship between steeper slopes and prevalence of larger soil substrates. Differences in 
the scale of measurements and focal parameter between studies (small-scale, plant-centered plots 
and occurrence - McPherson 2002; larger area-based scale along lines and density - this study) 
may explain some differences in observed habitat associations. Regardless, such results suggest 
the applicability of DS for assessing large-scale habitat relationships. Because our study was not 
designed specifically to assess habitat relationships, however, results reported here are 
preliminary.      
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Although often considered a nuisance parameter, understanding factors that influence detection 
probability (P) is important for designing survey methods because the best techniques have a 
high and consistent probability of detecting the target species and low sampling error (Thompson 
et al. 1998). We found that the size of soil substrates had the greatest influence on P during DS, 
with lower P associated with larger substrates. A likely explanation for this result is that rockier 
substrates make cacti more difficult to see by oncoming observers because they break up the 
unique silhouette of plants. We also found that when considered individually in detection 
functions, P declined with increasing understory vegetation volume and grass cover, and 
decreasing PPC height. Once the influence of substrate size was considered, however, there was 
little evidence these covariates significantly influenced the scale of detection functions due likely 
to small sample sizes. With the addition of more samples in the future, we suspect these factors 
will improve model fit and accuracy, and thus should be measured as part of DS protocols. This 
possibility is emphasized by the fact that detection distances increased as the height of plants 
increased and decreased with grass cover. Although such results suggest we were more likely to 
miss small PPC during DS, average height of PPC we detected (12.2 cm) was similar to that 
found by Baker (2013; 10.9 cm) across time, and overall bias was fairly low. These patterns and 
the fact that DS can provide accurate results despite missing a large portion of focal objects 
(Buckland et al. 2001) suggest DS is an appropriate technique for estimating PPC abundance at 
least in populations with typical size distributions. Regardless, the influence of covariates of P 
had relatively small effects on the overall magnitude of density estimates, at least at the 
population scale, and on average, P was high (≈0.50) suggesting DS surveys for PPC are likely 
to be generally efficient. To our knowledge, this study is the first to explicitly estimate P of PPC 
populations and assess environmental factors associated with variation in P.  
            
Recommendations: Despite promising results, several modifications to the protocol we used here 
should improve accuracy. First, our estimates of effective strip width and P suggest ≈20% of 
areas between neighboring parallel line transects were not adaqualetly covered. Because 
considering these areas will improve accuracy, we recommend reducing spacing between lines 
from 50 to 40 m, and perhaps somewhat closer in areas with dense grass cover. This 
modification will augment the number of individual cacti detected but may result in a few larger 
individuals being detected from neighboring lines, which can be addressed by truncation and 
censoring observations before analyses. Second, more effort should be placed on detecting all 
individuals, especially smaller ones, on or immediately around the transect line. Such effort 
could involve somewhat longer search times (e.g., slower walking speeds) and more intensive 
searches under and around clumps of low vegetation during DS. Third, surveys at sites with 
steep slopes and dense vegetation along drainage channels were often problematic when lines 
were not perpendicular to contours. This is because surveying steep slopes and walking through 
dense vegetation along washes while surveying for cacti was difficult, distracting, and sometimes 
required repositioning lines to flatter or more open areas (such as Palo Alto where we markedly 
overestimated densities). To address this issue, we suggest placing lines perpendicular to the 
slope gradient so that observers walk up and down steep slopes and across washes rather than 
along contours and drainage channels. Finally, we also recommend that the timing of DS surveys 
for PPC be focused during periods when herbaceous vegetation cover is likely to be minimal and 
when grasses are not green. In our region, this time period is often between November and June 
unless fall and winter rains have been substantial. While additional field study and simulations 
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across a gradient of contexts are needed to better understand the efficacy of DS for PPC, results 
obtained here together with the above recommendations offer promising opportunities. Finally, 
because DS can easily be completed within the context of Roller-type surveys without significant 
increases in effort, we recommend DS be integrated into existing protocols to facilitate additional 
study. Combining techniques would allow estimation of the number of individuals present but 
undetected during surveys and thereby help improve results. In general, our results combined 
with these recommendations validate the applicably of DS for estimating abundance of PPC and 
suggest, that when coupled with an appropriate sampling design, DS is capable of accurately 
estimating abundance of PPC across the range of taxon and for more focused applications in 
space.  
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Table 1: Candidate models of detection functions we considered when estimating the density of the Pima Pineapple Cactus based 
in distance sampling at 11 sites in south-central Arizona, 2016-17.  K denotes the number of model parameters, D is estimated 
density (no. of live individuals/ha), CV is the coefficient of variation, N is total abundance or population size, LCL and UCL are 
lower and upper 95% confidence intervals, ESW is effective strip width, and P is average detection probability. Estimates are from 
program Distance (version 6.2; Thomas et al. 2010), based on a sample of 105 cacti detected (5% of observations truncated), and 
all models are based on half normal key functions with cosine adjustments.  

 

Model        
Selection 

 
Density 

 
Abundance  

 
Detection 

Covariates K ΔAICc 
 

D D CV D LCL D UCL   N N LCL N UCL   ESW P 

Substrate Size 2 0.00 
 

1.465 0.139 1.109 1.937 
 

294 222 388 
 

9.71 0.485 

Substrate Size + Grass Cover 3 0.12 
 

1.484 0.140 1.120 1.965 
 

297 224 394 
 

9.59 0.479 

Cactus Height + Substrate Size + Grass Cover 4 1.44 
 

1.493 0.140 1.126 1.979 
 

299 226 397 
 

9.53 0.476 

Cactus Height + Substrate Size 3 1.52 
 

1.472 0.139 1.113 1.948 
 

295 223 390 
 

9.66 0.483 

Substrate Size + Vegetation Volume 0-1 m 3 1.86 
 

1.467 0.139 1.109 1.941 
 

294 222 389 
 

9.69 0.485 

Cactus Height + Grass Cover 3 2.06 
 

1.466 0.139 1.108 1.941 
 

294 222 389 
 

9.70 0.485 

Vegetation Volume 0-1 m 2 2.98 
 

1.440 0.138 1.091 1.901 
 

289 219 381 
 

9.88 0.494 

Grass Cover 2 3.17 
 

1.439 0.138 1.090 1.899 
 

288 218 381 
 

9.89 0.494 

Cactus Height 2 3.21 
 

1.434 0.138 1.087 1.893 
 

287 218 379 
 

9.92 0.496 

Cactus Height + Grass Cover + Veg. Volume 0-1 m 4 3.85 
 

1.470 0.140 1.109 1.947 
 

294 222 390 
 

9.68 0.484 

None {CDS model} 1 4.55 
 

1.406 0.141 1.059 1.866 
 

282 212 374 
 

10.12 0.506 

Grass Cover + Vegetation Volume 0-1 m 3 4.87 
 

1.443 0.138 1.092 1.907 
 

289 219 382 
 

9.85 0.493 

Understory Height  2 5.88 
 

1.412 0.137 1.072 1.860 
 

283 215 373 
 

10.07 0.504 

Slope (log) 2 6.41   1.408 0.136 1.069 1.853   282 214 371   10.11 0.505 
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Table 2: Comparison of estimates of density (D) and abundance (N) of the Pima Pineapple Cactus based in distance sampling at 11 
sites and all sites combined in south-central Arizona, 2016-17. Census results are based on the Roller (1996) method and the Roller 
method followed by intensive repeated monitoring over time, and completed within 0 to 4 years of distance sampling effort. Bias 
denotes the % difference between census results and estimates from distance sampling. Population estimates are area-weighted 
averages. Distance-based estimates are from program Distance (version 6.2; Thomas et al. 2010), based on a sample of 105 cacti 
detected (5% of observations truncated), and based on a half normal key function with cosine adjustment.   
    

   
Census Results 

 
Distance Sampling Results 

 
Bias (%) 

Site 
Plot Area 

(ha)   D N Source Method   D N CV 
No. 

Observed 
Effort  
(m) 

No. of 
Lines   D N 

Anvil* 18.3 
 

0.219 4 Baker Monitoring 
 

0.146 3 1.004 1 3,525 7 
 

-33.1 25.0 

Canoa 23.4 
 

2.35 55 This study Roller 
 

1.07 25 0.301 10 4,825 8 
 

-54.6 -54.5 

Guy Street 23.8 
 

0.252 6 Baker Monitoring 
 

0.179 4 0.733 2 5,745 11 
 

-28.8 -33.3 

Mendoza* 24.2 
 

2.85 69 Baker Monitoring 
 

1.30 32 0.287 13 5,133 10 
 

-54.2 -53.6 

Palo Alto 24.6 
 

3.26 80 Baker Monitoring 
 

5.02 125 0.231 38 3,902 10 
 

56.0 56.3 

Sopori 1 7.4 
 

1.62 12 This study Roller 
 

2.18 16 0.292 4 947 3 
 

34.7 33.3 

Sopori 2 8.0 
 

3.86 31 This study Roller 
 

1.56 12 0.452 6 1,985 6 
 

-59.6 -61.3 

Sopori 3 4.0 
 

5.53 22 This study Roller 
 

5.95 24 0.302 10 866 4 
 

7.6 9.1 

Stagecoach 31.6 
 

0.222 7 Baker Monitoring 
 

0.363 11 0.469 3 4,252 8 
 

64.1 57.1 

Sycamore 1 16.7 
 

1.86 31 Westland Monitoring 
 

1.72 29 0.342 9 2,696 9 
 

-7.3 -6.5 

Sycamore 2 18.4 
 

0.817 15 Westland Monitoring 
 

0.686 13 0.505 4 3,003 7 
 

-16.0 -13.3 

All Sites 200.4   1.66 332 --- ---   1.47 294 0.139 100 36,878 83   -11.4 -11.4 
 

*Distance sampling transects covered only portions of original plots containing the majority of the cactus population, with plot area and densities adjusted from those reported in 
Baker (2013).  The Anvil plot contained 4 of 5 known plants and the Mendoza plot contained 69 of 71 known plants.  
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Table 3: Comparison of geographic, topographic, and vegetation factors at 11 sites where we implemented distance sampling for the 
Pima Pineapple Cactus in south-central Arizona, 2016-17. Means and standard errors (SE; or range) are based on sample sizes (n) 
noted for each site, which are based on measurements at points (elevation, slope), within 10 m of points (vegetation factors), or at the 
site scale (region, dominant vegetation community). Units for substrate size are: 1-fine sand with few larger particles, 2-coarser gravel 
with particles up to about 1 cm diameter, 3–rocky substrate with particles >2 cm diameter.  
 

Site Region 
Vegetation 
Community n 

Elevation (m)   Slope (%) 
 

Substrate Size 
 

Grass Cover (%) 
 

Vegetation Volume 
0-1 m (%) 

 

Understory Height 
(cm) 

Mean Range   Mean SE   Mean SE   Mean SE   Mean SE   Mean SE 

Anvil Brawley Grassland 42 829 8 
 

1.5 0.1 
 

1.0 0.00 
 

13.7 2.5 
 

13.5 2.2 
 

14.1 1.6 

Canoa Santa Cruz Grassland 56 934 15 
 

3.7 0.2 
 

2.1 0.11 
 

64.3 4.0 
 

53.2 2.2 
 

63.5 2.5 

Guy Street Brawley Desert-scrub 70 802 7 
 

1.8 0.1 
 

1.1 0.03 
 

1.1 0.3 
 

14.2 1.2 
 

10.3 0.8 

Mendoza Brawley Grassland 66 978 18 
 

5.4 0.3 
 

1.9 0.08 
 

38.1 2.3 
 

25.5 1.9 
 

28.6 1.2 

Palo Alto Brawley Grassland 48 890 20 
 

8.0 1.1 
 

1.7 0.11 
 

10.4 1.6 
 

22.4 2.4 
 

27.9 2.1 

Sopori 1 Santa Cruz Desert-scrub 14 991 9 
 

6.1 0.7 
 

2.2 0.15 
 

3.8 1.0 
 

25.0 5.1 
 

14.4 1.5 

Sopori 2 Santa Cruz Desert-scrub 30 992 11 
 

7.9 1.3 
 

2.2 0.16 
 

3.2 0.9 
 

24.2 2.8 
 

16.6 1.7 

Sopori 3 Santa Cruz Desert-scrub 14 985 11 
 

6.6 0.9 
 

2.0 0.00 
 

2.0 1.0 
 

15.5 2.7 
 

11.5 1.5 

Stagecoach Brawley Desert-scrub 58 1,027 21 
 

3.2 0.1 
 

1.1 0.05 
 

3.9 0.5 
 

14.3 1.1 
 

13.9 1.1 

Sycamore 1 Santa Cruz Desert-scrub 36 1,083 14 
 

3.2 0.1 
 

2.7 0.09 
 

3.0 1.0 
 

31.9 3.0 
 

29.3 3.9 

Sycamore 2 Santa Cruz Desert-scrub 42 1,003 15   2.8 0.1   2.7 0.11   3.1 1.0   34.7 3.1   16.1 2.3 
 

  



 

20 
 

 

Table 4: Factors that explained variation in local densities (log no./ha) of the Pima Pineapple 
Cactus along 76 line transects at 11 sites in southern Arizona, 2016-17. Parameter estimates and 
standard errors (SE) are from a linear mixed-effects model in which site was fit as a random 
intercept (σ2 = 0.03 intercept; 0.27 residual) and estimates of local density derived from distance 
sampling was fit as the response variable. Non-significant factors are not included in this table 
but noted in the text. 

Factor Estimate SE |t| p 

Intercept -0.62 0.31 1.98 0.052 

Vegetation Volume 0-1 m (%) -0.015 0.006 2.36 0.022 

Slope (log %) 0.65 0.19 3.45 0.001 

Substrate Size (rank) 0.36 0.16 2.28 0.026 
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Figure 1: Location of 11 sites where we estimated densities and detection probability 
of the Pima Pineapple Cactus with use of distance-sampling methods in south-central 
Arizona, 2016-17. Top inset figure shows the arrangement of line transects and cacti 
detected and not detected at site number 11 and the sampling points located at 100-m 
intervals at which we sampled environmental attributes, and lower inset shows the 
location of the study area with reference to state and national boundaries. Sites are as 
follows: 1) Mendoza, 2) Anvil, 3) Guy Street, 4) Stagecoach, 5) Palo Alto, 6-8) 
Sopori 1-3, 9) Canoa, 10-11) Sycamore 1-2. 



 

22 
 

 

 
 

Figure 2: Frequency histograms of detection distances of 105 Pima Pineapple Cacti observed 
during line-transect surveys in southern Arizona, 2016-17. Top figure shows raw frequencies 
within 1-m bins and lower figure shows frequencies within the 2.5 m bins used when modeling 
detection functions. Open bars at distances >20 m represent 5% of observations we truncated 
when fitting detection functions.   
 
  



 

23 
 

 
 
 

 
 
 
Figure 3: Influence of four covariates on detection probability of the Pima Pineapple Cactus from 
distance sampling along line transect at 11 sites in south-central Arizona, 2016-17. Estimates are 
based on multiple covariates distance sampling and half normal key functions with cosine 
adjustments in which each covariate was fit individually. Estimates are shown at covariate levels 
equaled to the lower, middle (e.g., median), and upper quartiles, which are indicated by the 
bottom, black line, and top of inset box plots that show the distribution of each covariate (white 
lines are means). Model selection criteria for each model are provided in Table 1.  
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Figure 4: Top-ranked detection function model for the Pima Pineapple Cactus based on distance 
sampling along line transect at 11 sites in south-central Arizona, 2016-17. Estimates are based on 
100 observations, multiple covariates distance sampling, and a half normal key function with 
cosine adjustments in which substrate size was fit as a covariate. The plotted function is the 
average detection function conditional on the observed covariates. 
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Figure 5: Linear associations between estimates of density (no./ha; top) and log density (bottom) 
of the Pima Pineapple Cactus at 11 sites in south-central Arizona, 2016-17. Estimates from 
distance sampling are based on 100 observations, multiple covariates distance sampling, and a 
half normal key function with cosine adjustments in which substrate size was fit as a covariate. 
Estimates from censuses were based on the Roller (1996b) method often combined with repeated 
monitoring and searches across time. Pearson correlation coefficients (r) are shown on figures.  


